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AI and high-frequency RF applications drives power density increase
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Outline

▪ Wafer-level thermal management during chip fabrication
▪ Thermoelectric solution
▪ Micro-jet solution

▪  Interposer-Level Thermal Management
▪  SiC vs Si

▪  PCB-Level Thermal Management
▪  Passive heat spreading with Ga/PCM composites
▪  Active Cooling with Magnetic PCM Slurry
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Overview of Cooling Techniques

PCM + Air Cooling

PCM + Liquid Cooling

PCM + Heat Pipe

HybridActive

Liquid

Fan

Mechanical 
Pump

Air

Requires Moving Parts

Composite

PCM with 
Metal-based

Pure PCM

CNTs

Graphen
e

Carbon 
Fibers

Expande
d 

Graphite

Phase-changing Materials (PCM)

Heat Pipe

Metal Foam

Metal fins
Nano 

particles

Metal Fiber

PCM with 
Carbon-based

Passive

Heat Sink

Constrained by 
Material Properties

Go beyond Machinery 
and Materials

Enhanced heat Absorption with PCM
Forced Convection by fluid motion
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Wafer-Level Thermal Management During 

Chip Fabrication
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Thermal Stress
→ Uneven heating creates thermal gradients
→ Mechanical stress builds up within wafer layers

Cracking & Die Damage
→ Local temperature spikes cause expansion mismatch
→ Edge chipping or catastrophic wafer fracture 
possible

Yield Loss
→ Hotspots degrade dies before packaging
→ Reduced test accuracy and device reliability

Thermal Runaway
→ Self-heating increases leakage → more heat
→ Escalates failure risk during test cycles

Probe Misalignment
→ Expansion mismatch distorts wafer surface
→ Risk of bond pad damage and bad electrical contact

Thermal Challenges in Wafer-Level Testing
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Prototype of Wafer-Level Thermal Management System

• 8 × 8 array
• 20 mm × 20 mm
• Up to 1.35 kW
• Power Density = 338 W/cm2

Designed testing rig with commercial TE device for high power 
thermal management system during wafer-scale testing

• Microscope

• Probe cards

• Thermal test chip

• Thermocouples

• 8-inch wafer

• TEC cooling chuck

Thermal test chip array for high power and controllable heat 
generation during testing
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Thermoelectric Array Approach
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Liquid Cooling Vs Hybrid Thermoelectric Cooling 

Chip
Substrate (Silicon wafer)

1.25 x 105 W/m2

Tliquid = 233.15 K, h = 1 x 103 W/m2-K

Φ300 mm * 0.5 mm

25 * 32 * 0.5 mm3 Chip
Substrate (Silicon wafer)

TE Heat sink
(Copper)

1.25 x 105 W/m2

40 mm

2
 m

m

1
.5

 m
m

Air gap (0.1 mm)

Liquid cooling: 
• Purely rely on cooling liquid below 

substrate.

Hybrid cooling:
• Chip is cooled down by TE cooler 

embedded in copper heat sink.
• The hot side of TE cooler is cooled down 

by cooling liquid.

Substrate

Chip
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Thermal Performance of Thermoelectric Cooling 

Heat flux 90,000~ 1,250,000W/m²

Heat transfer coefficient  60 kW/m²@ 20 °C

NP NP NP NP NP NP NP NP NP
3.2 ~32 A

• With maximum heat power of  32 W , steady state within ΔT =1 °C  achieved 

• TECs are effective for fast, localized cooling, especially in short-duration 
thermal spikes during wafer-level testing

8 W/cm² -3.2 A
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Between 0.1 and 1 second, the TEC effectively 
reduces the die temperature—demonstrating its 
active response time across a 100 µm Si wafer 
thickness

By operating the TEC under different conditions, 
we can actively modify the temperature profile 
and achieve greater uniformity across the wafer



Enhanced Cooling via Thin-Film Thermoelectric Elements

• Fast response - Commercially available TEC 
can have fast response to the temperature ~ 
depending to the applied heat flux and 
current

• Low heat flux - Commercially available TEC 
cannot remove the heat flux 1.25W/mm²~ 
maximum heat flux for TEC~100 times smaller

• Reducing the thickness of TEC 1000 µm to 20 
µm each layer) can significantly increase the 
response time (~10 ms) and  heat flux (24.5 
W/cm²)
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The thin TEC cooling much faster and supports a 
higher power density (24.5 W/cm² vs. 8.0 W/cm²)



Micro-Jet Impingement Array Approach
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Heat flux 1.25W/mm2

Optimized design of fractal channels ~ unform velocity 
distribution with low pressure drop 
ΔT within 2 °C better uniformity

Poor pressure distribution
Non-uniform HTC  across the jetting area 
Lower HTC compared with circular shape 
Large ΔT across copper heat spreader

Large ΔT across the copper heat 
spreader ~ Not all area was 
covered with micro-jet 

Micro-Jet Impingement Cell Optimization

Micro-jet delivers 
high heat transfer 
coefficients and fast 
thermal response by 
directing small, high-
speed fluid jets at 
localized hotspots 
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Performance Comparison: Thermoelectric vs. Micro-Jet Cooling
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Power Density < 0.08 W/mm²:
→ TEC responds faster and maintains a lower 
steady-state temperature than micro-jet cooling

Power Density ≈ 0.09-0.1 W/mm²:
→ TEC still reacts faster initially,
→ but micro-jet achieves a lower steady-state 
temperature over time

Power Density ≈ 1.25 W/mm²:
→ Micro-jet outperforms TEC in both response 
time and steady-state cooling

TECs are effective for fast, low-power scenarios, micro-jets 
are more suitable for high-power, high-density applications



Interposer Level Thermal Management 
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Thermal Runaway: In extreme cases, excessive heat 
accumulation can trigger thermal runaway phenomena, 
where temperature increases uncontrollably, leading to 
catastrophic failure or damage to components and systems. 

Efficiency Losses: Increased temperatures can degrade the 
efficiency of components and circuits, resulting in reduced 
power output, signal quality, and overall system 
performance.

Signal Distortion: Heat-induced thermal variations can cause 
changes in the electrical properties of RF components, 
leading to signal distortion, phase shifts, and frequency 
drift.

Reliability Issues: Excessive heat can accelerate the 
degradation of electronic components and materials, 
leading to premature wear-out, thermal fatigue, and 
reliability issues. Thermal stress and thermal cycling can 
cause solder joint failures, interconnect delamination, and 
semiconductor breakdown, compromising system reliability 
and longevity.

Impact of Heat on Interposer
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Material Requirements for High-Performance Interposers
▪ High Thermal Conductivity

Substrate materials with high thermal conductivity facilitate the efficient transfer of heat away from the active components, 
thereby maintaining optimal operating temperatures.

▪ Low Dielectric Loss

Materials with low dielectric loss properties help preserve signal integrity and reduce RF losses, enabling efficient 
transmission of high-frequency signals.

▪ High Electrical Insulation

Effective electrical insulation properties are necessary to prevent short circuits and interference between different 
components or conductive traces on the substrate. Insulating materials help maintain signal isolation and prevent unintended 
electrical coupling, ensuring reliable operation of RF circuits.

▪ Wide Bandgap

Wide bandgap materials exhibit excellent breakdown voltage characteristics, making them suitable for high-power operation 
without compromising reliability.

▪ Mechanical Stability

Substrate materials should possess mechanical stability to withstand the stresses and strains encountered during fabrication, 
assembly, and operation.

▪ Cost-Effectiveness

Balancing performance with cost considerations is essential to meet the economic requirements of high-volume production 
in RF applications.
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Material Bandgap (eV)
Critical 

Electric Field 
(MV/cm)

Thermal 
Conductivity 

(W/mK)

On-
Resistance 

(mOhm·cm2)

Breakdown 
Voltage 

(kV/mm)

Melting point 
(°C)

Si 1.1 [1] 0.3 - 1.0 [2] 150 - 200 [3] 1 - 100 [4] 0.2 - 0.7 [5] 1,414 [30]

SiC 3.2 [6] 2.2 - 4.5 [7] 250 - 300 [8] 0.1 - 10 [9] 2.5 - 4.7 [10] 2,830 [31]

GaN 3.4 [11] 2.5 - 3.3 [12] 130 - 180 [13] 0.1 - 10 [14] 2.6 - 3.3 [15] 1,100 [32]

GaAs 1.4 [16] 3 - 6 [17] 50 - 60 [18] 0.1 - 10 [19] 0.2 - 0.8 [20] 1,237 [33]

Diamond 5.5 [25] 20 [26] 2000 - 2200 [27] 0.01 - 1 [28] >5 [29] 3,550 [35]
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Interposer Substrate Material Properties

▪ Very expensive
▪ Difficult material to grow and process
▪ High density of defects
▪ Very hard material -> difficult to form reliable electrical contacts
▪ High electrical resistance -> difficult to form low-resistance contacts
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Water treatment
Si–O–Si + HOH → Si–OH + HO–Si

Thermalcompression
Si–OH + HO–Si →Si–O–Si + HOH

Plasma activation
Si● + HO-H + SiO● → Si–OH + HO–Si

Si/SiC Hybrid Bonding Techniques

Plasma assisted bonding Bonding with Al interface 
Thermalcompression

SiC

SiOx 10.66nm

S
i

10.18nm

Direct bonding advantage:
Avoid metal incorporation, 
electrical  leakage, and RF 
signal loss

Challenges: 
1) Bonding should be done at 
low temperature (< 400C), 
surface roughness should be 
very small (Rq<10nm)
2) Low press force  to avoid the 
damage to the patterned area

Bonding with Al interface 
advantages:
1) Bonding at low 
temperature 
(< 250degree)
2) Surface roughness is not 
critical
3) Low press force
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Thermal Performance Comparison of Hybrid Bonded Si/SiC

Si or SiC

Si

SiO2
SiO2

2. Si or SiC, SiO2 layer

Si or SiC

Si

1. Si or SiC

Si or SiC

Si

Ti

Al2O3
Al

Al
Ti

Al2O3

3.Si or SiC, Al, Al2O3 layers

250 um

100 um

350 um

Temperature 
measurement point

400 nm

5 nm

2 nm
Power application 
surface

Simulation was done using 
COMSOL
 
Assumption: 
1. Free-standing
2. Natural convection on all the 
surfaces
3. Neglect radiation

Si

SiC

3x3cm

Power: 2W

8nm
2nm

SiC substrates lower hotspot temperatures by up to 
26% versus Si, giving us the flexibility to choose 
bonding methods based on other factors like cost or 
integration ease
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SiC Interposer Enables Higher Component Density

2 cm

1.55 cm

Keep max 
temperature on Si die 
as 70°C

Keep max 
temperature on Si die 
as 170°C

Si

Si

SiC

SiC

Component density 
increased by 23.3%

Component density 
increased by 22.5 %

0.52cm0.67cm

0.77 cm1 cm

3 cm

2.3 cm



Cu 

heat 

sink 

Heat pipe Micro-jet

SiC

GaN
SiC

Cu

GaN

Integrated Cooling Methods for Higher Density Interposers

< 600W/m2 6000W/m2~60,000W/m2 >60,000W/m2

SiC

Si

GaN
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By tailoring the cooling method to the application’s power density, we can enable
 high-performance, thermally stable interposer platforms for advanced IC packaging



PCB Level Thermal Management:

Passive Thermal Management Solution
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Heat

Thermal Challenges in Flexible PCB

Integration Complexity: 
• Integrating efficient thermal management solutions without 

compromising the flexibility of the PCB and the overall 
mechanical design can be challenging. 

• The compact form factor of flexible PCBs limits the available 
space for heat management solutions. Designing efficient 
solutions that fit within these constraints is challenging.

Hotspot Formation: 
• Uneven heat distribution can lead to localized hotspots on 

PCB. These hotspots not only affect the performance of 
nearby components but can also cause damage to the PCB 
material.

Mechanical Stress: 
• Elevated temperatures can lead to thermal expansion of the 

flexible PCB materials. This expansion and contraction cycle 
can induce mechanical stress and strain, potentially leading 
to material degradation and compromised mechanical 
integrity.
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PA forced to operate in a safer but 
less efficient mode, after self-
protection loop was triggered by 
temperatures, otherwise burn

PA: HMC952ALP5GE (ADI)
• 26% PAE
• 32 dB gain
• 8-14 GHz

Temperature Impact on RF Components

Radiation patterns at the resonance frequency

Temperature distribution on the PCBAntenna integration platform design

Temperature impact of the antenna performance

25



0.0 0.8 1.6 2.4 3.2 4.0

0

120

240

360

480

600

R
is

e
 t

im
e

 (
s
)

Average power (W)

0 20 40 60 80 100

20

40

60

80

100

120

140

160
Thermal management

 without  proposed

T
e

m
p

e
ra

tu
re

 (
°C

)

Duty cycle (%)

a

b

c

d

e

f

g

h

i

j

k

l

4.7 

12.4℃

138 ℃

126 ℃

73 ℃

88 ℃

144 ℃

77 ℃

0 5 10 15 20 25 30
110

120

130

140

150

160
 without

 partial

 proposed

E
q

u
ili

b
ri
u

m
 t

e
m

p
e

ra
tu

re
 (
°C

)

Distance (mm)

PA

0 120 240 360 480

20

40

60

80

100

120

140

160

 RT1

 RT2

 RT3

 RT4

 RT5

 RT6

 RT7

 RT8

 RT9

 RT10
T

e
m

p
e

ra
tu

re
 (
°C

)

Time (s)

0 120 240 360 480

20

40

60

80

100

120

140

160

 RT1

 RT2

 RT3

 RT4

 RT5

 RT6

 RT7

 RT8

 RT9

 RT10

T
e

m
p

e
ra

tu
re

 (
°C

)

Time (s)

0 120 240 360 480

20

40

60

80

100

120

140

160

 RT1

 RT2

 RT3

 RT4

 RT5

 RT6

 RT7

 RT8

 RT9

 RT10

T
e

m
p

e
ra

tu
re

 (
°C

)

Time (s)

Equilibrium 

0% 20% 40% 60% 80% 100%

122

123

124

T
e

m
p

e
ra

tu
re

 a
t 

4
 m

in
u

te
s
 (

°C
)

LM loading (vol %)

 2 W

 3 W

 4 W

 5 W

 6 W

-47.3

-23.0

+21.7

+42.1

120

240

360

∞

T
im

e
 b

e
fo

re
 c

ri
ti
c
a

l 
te

m
p

e
ra

tu
re

 (
s
)

Design and Characterizations of PCB With the Thermal Management Structure 

Without 
thermal 
management

With insulation 
and heat 
spreading layer

Fully equipped 
with the 
proposed thermal 
management 
solution

Equilibrium temperature distribution 
along the thermistor array

Antenna side

Circuits side
Active antenna

Electrical insulation

Encapsulation frame

Heat spreading layer

Heat emission layer

PA

Graphite sheets

Copper sheet

CNT coating

LM/PCM composites

a

b

Heat absorption layer

A Fancy Image

Surface temperature 
distribution became 
more uniform 

Overheating is delayed, 
and the equilibrium 
temperature is reduced 
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Thermal Management Concept: Combination of Heat Spreading, Heat Adsorption, 
and Radiation Materials for Optimal Performance

By adding each layer the 
temperature value is 
decreased and heating 
time is delayed
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Material Evaluation for Passive Heat Spreading
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Thrust 2

Thrust 3

Thrust 3

Liquid Ga and Ga 
composites show one of 

the best performance 
along with graphite
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Liquid Ga

• Good thermal conductivity
 21 W/mK @ 20 ℃
 16 W/mK @ 40 ℃
• Low heat capacity

PCM n-Octadecane
• Large heat capacity
 2.7 J/gK @ 40 ℃ (liquid)
• Absorb even larger latent heat during melting
 222 J/g
• low thermal conductivity
 0.11 W/mK @ 20 ℃ (solid)
 0.16 W/mK @ 40 ℃ (liquid)

Trade-off between heat capacity and thermal conductivity
Spread heat uniformly, absorbing it at the same time

Material Trade-offs: Ga:PCM Composite

29



Optical images of Ga:PCM samples, pure PCM (0%) and pure Ga (100%)

SEM images of Ga:PCM composite

EDX mapping

Ga particle sizes ~10 µm

Structural Characterization of Ga:PCM Composite
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Optimal Ga concentration to achieve the best 
tradeoff between thermal conductivity and latent 
heat  within the composite material

Thermal Performance of Ga:PCM Composites

Stable during thermal 
cycling

Average overheating 
delay of 4.7 times 

Average reduction in equilibrium 
temperature by 12.4℃
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Material
Absorption Length 

(μm)
Emissivity Specific Heat (J/g·K)

Copper ~0.5-2.5 ~0.03-0.05 0.39

Aluminum ~0.5-2.5 ~0.03-0.05 0.90

Silicon ~1.1 ~0.7 0.71

PDMS ~0.2-2.5 ~0.10-0.15 1.70

n-octadecane ~0.5-3.0 ~0.80-0.95 2.10

Polyimide ~2.0-3.0 ~0.80-0.95 1.35

Carbon Nanotubes ~2-10 ~0.8-0.98 0.5-1.5

Graphene ~0.1-1 ~0.98 0.7-0.9

Graphite ~0.1 ~0.95 0.71

Radiative Cooling Structures Based on Carbon Nanotubes 

Carbon based materials have the best 
properties for radiation-dominated  cooling 

In radiative cooling, a 
material with a shorter 
absorption length can 
absorb heat from the 
surroundings effectively 
and cool down faster

Higher emissivity values 
indicate that a material 
emits thermal radiation 
more efficiently

Materials with lower 
specific heat can cool 
down faster once 
they have absorbed 
heat

The Absorption Length, Emissivity, and Specific Heat of a 
material influence its cooling speed
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Without thermal management
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PCB Level Thermal Management:

Active Thermal Management Solution
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Proposed Magnetically-Driven PCM Slurry Cooling System

Key Features:

•  Without mechanical moving part

•  Higher heat capacity than water

•  Faster than natural convection

Photograph of the slurry

Magnetic iron oxide nanoparticles (MIONP)

PCM (e.g., n-Octadecane)

Polymer shell (e.g., Melamine formaldehyde (MF))

Water

Schematic of the Micro-encapsulated PCM (MPCM)  

Liquid flow

Ferrohydrodynamic pump

Heat source
Heat sink

Channel/pipe for fluid

Schematic of the cooling system using MPCM 
slurry and ferrohydrodynamic pump

Microcapsules with Fe3O4  Microcapsules w/o Fe3O4 
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Thermal and Magnetic Characterization

Demonstration of magnetic property of the slurry

Magnet

Attract

Magnetic properties of MPCM

MPCM Statics:
• Average size ~ 5 μm
• Latent heat = 146 J/g (MPCM), or = 11 J/g (Slurry)
• Magnetic moment = 23.7 emu/g

Thermal properties of MPCM and slurry
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Comparison between MPCM slurry and water in cooling performance

Performance Comparison: MPCM Slurry vs. Water Cooling

Compared to water, our 
slurry achieved:
ΔT = 2.7 ℃ @ 4 W
ΔT = 3.9 ℃ @ 6 W
-22.6% in Thermal resistance

Liquid flow
10 mL/min

Inlet reservoir Outlet reservoir

Inlet temperature Heater temperature
(water)
(Slurry)

Illustration of experimental setup

Heater (Varying heating power)

Melting temperature

2.95 2.917

2.275 2.267

4 6
0

2

4

T
h

e
rm

a
l 
re

s
is

ta
n
c
e

 (
K

/W
)

Power (W)

 Water  Slurry

Comparison of thermal resistance
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Ferrohydrodynamic Pumping: Timing and Coil Control

ON

ON

ON

ON

T1

2T1

3T1

4T1

Coil 4 Coil 3 Coil 2 Coil 1

Timing diagram of  the ferrohydrodynamic pump
Coils are activated in sequence to realize continuous movement 

𝐹 = ∇ 𝑀 ⋅ 𝐵

Magnetic body force B F
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Summary

▪ Proposed compact, scalable thermal management solutions compatible with chip, interposer, and board levels, for 
RF, AI, and high-density electronics.

▪ Wafer-Level Thermal Management
Developed high-power thermoelectric cooling systems and micro-jet impingement arrays enabling rapid temperature 
uniformity (ΔT < 1 °C) and high heat flux handling up to 1.25 W/mm².

▪ Interposer-Level Innovations
Demonstrated the use of SiC substrates and hybrid bonding to lower hot spot temperatures by up to 26%, enabling 22–
23% higher component density.

▪ PCB-Level Passive Thermal Management
Designed layered structures combining heat spreading, adsorption, and radiation using materials like graphite, Ga 
composites, and CNTs, reducing temperatures and improving uniformity.

▪ Active Cooling: Magnetic MPCM Slurry
Developed a magnetically driven slurry cooling system using microencapsulated PCMs and ferrohydrodynamic pump.
Achieved a 22.6% reduction in thermal resistance over water cooling without mechanical pumps.



Thank You
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