

EU – Singapore – 1st Joint Researchers Workshop on Semiconductors

Photonic Smart Sensing

Stephan Suckow

Group Leader Nanophotonics

AMO GmbH

AMO GmbH Overview

Gesellschaft für Angewandte Mikro- und Optoelektronik mbH

Managing Director: Prof. Max C. Lemme

~85 staff members

- High-Tech SME (non-profit)
- Research Foundry
- Close ties to RWTH Aachen University
- operating since 1997
- Departments
 - Nanostructuring
 - Nanoelectronics
 - Nanophotonics
 - Sensors
 - Perovskites
- Key technologies:
 - Silicon technology base
 - 400 m² "extended CMOS" clean room
 - Integration of new materials

Commercial foundry services at AMO International Commercial foundry services at AMO

Mass Production

- R&D is our "product"
 - Publicly funded research projects
 - Contract research
 - Customer services

Photonic Smart Sensing

- Electrons are dumb and photons are smart?
 - Current & voltage
 - Wavelength
 - Modulation frequency
 - Electrical nonlinearity
 - Temperature-dependent resistance
 - Spin

- Intensity
- Wavelength
- Modulation frequency
- Optical nonlinearity
- Thermo-optic effect
- Polarization
- Chirality

Electrons vs. Photons

- Electrons: Coulomb Interaction
 - Easy to manipulate
 - States very short-lived
- Photons: Bosons
 - Incredibly stable
 - Hard to manipulate
 - Can be very useful to sense specifically and over longer distances

"Classic" Photonic Sensing

- Wavelength-specific detection
 - Spectrometers
 - Absorption / Reflection spectroscopy
 - FTIR (Fourier Transform Infrared Spectroscopy)
 - Raman spectroscopy / microscopy
- Well suited for on-chip integration
 - Less than 1 mm² die space
 - Simple process
 - Negligible cost

A. Li et al., "Advances in cost-effective integrated spectrometers", Light Sci Appl 11, 174 (2022)

Example: Integrated Wavemeter

- Device to precisely measure monochromatic wavelength
- Bristol Instruments 872 Series: typ. 20 40k USD

- AMO device: accuracy comparable in best case (0.2 pm vs. 0.16 pm)
- Performance limit: temperature stabilization of package

Combine Photonics & Plasmonics?

- Photonic evanescent field sensing
- More interaction needed: Slot waveguide, Photonic crystal...

M. Butt, "Dielectric Waveguide-Based Sensors with Enhanced Evanescent Field: Unveiling the Dynamic Interaction with the Ambient Medium for Biosensing and Gas-Sensing Applications—A Review", *Photonics* **2024**, *11*(3), 198

Good interaction, high field

strength, limited to surface

S. Sabban, "Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high- affinity FceRI receptor" (PhD thesis 2011), The University of Sheffield, CC BY-SA 3.0

Surface Plasmon Polaritons (SPPs)

A. Manolis et al., "Ultra-fast detection of pathogens and protein biomarkers using a low-cost silicon plasmonic biosensing platform", Sensors and Actuators Reports 8 (2024) 100221.

M. Elrabiaay et al., "Balanced plasmonicaugmented silicon photonic interferometric sensor for biosensing applications", Opt. Expr. 33(11), 23110 (2025).

- Strong interaction
- SPPs reach ~1 μm into analyte
- Versatile functionalization
- Best of Photonics & **Plasmonics**

Miniaturized hybrid SPP sensor

- Bimodal, "single arm" interferometer
- Best of Photonics & Plasmonics
- Active area 75 x 7 $\mu m \rightarrow$ extremely high sensor density

with polymer cladding", Opt. Expr. 33(5),

9813 (2025)

Refractive Index Sensor Comparison

Sensor	Sensitivity in nm/RIU	Penetration depth	Footprint
Photonic	100 – 1,000	100's of nm	Single digit mm ²
SPR	~60,000	10's of nm	Small spot, large chips
SPP MZI	2,000 – 4,500	~1 μm	100's of μm ²
SPP bimodal	6,000 – 13,000 (+)	~1 μm	10's of μm ²

- Sensitivity: spectral shift (nm) per refractive index unit change (RIU)
- Sensors push performance so far, that functionalization and the system around them limit performance
 - → spectrometer, detector & read-out integration?

Let's not forget about the electrons!

spectrometer, detector & read-out integration

- Lower cost
- Less electronic noise
- Higher data rate
- Neuromorphic computing in hardware
- Options
 - Package level integration
 - Zero-Change CMOS Photonics
 - Back-end-of-line (BEOL) photonic integration

A. Lukashchuk et al., "Photonic-electronic integrated circuit-based coherent LiDAR engine", Nat. Comm. 15, 3134 (2024)

BEOL integration: the holy grail

Idea

- Few additional processes hardly increase cost
- Have metal & dielectrics in BEOL → passive photonics
- Adjust processes for lower temperature budget
- Add material for active functionality
- Graphene and other transferred 2D materials are a prime candidate

Prospects

- AMO spun-off Black Semiconductor to develop exactly that
- They secured ~250 M€ funding and are building "Fab 1" in Aachen

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562 and 101131822 (InfraChip), 101007448 (GRACED), 101135435 (Multilab), 101139777 (PhotonMed) and by the German BMFTR GA N° 13N14971 (ElecTRIC).

www.icos-semiconductors.eu