

EU – Singapore – 1st Joint Researchers Workshop on Semiconductors

GaN Technology for Power Electronics Applications

Dr. Urmimala Chatterjee,
R&D Engineer
IMEC, Leuven, Belgium

Introduction

GaN Technology: A breakthrough for PE Application

Introduction

GaN Market Share

Source:: GaN power 2021, Yole Development, 2021

Operating a GaN Power Device

-An optimized gate driver design is important to fully utilize a GaN power switch
 - Crucial for system efficiency, robustness and EMC performance

IMEC GaN Power Technology Overview Son Semiconductors

40V/100V p-GaN HEMT

200V/650V p-GaN HEMT

Monolithic integration (GaN-IC)

*J. Thone, PWR SOC 2021

1200V GaN under development Lateral p-GaN HEMT $V_{GS}=0V$ 200 600 1000 1200 $V_{DS}[V]$ **Vertical GaN FET**

Outline

- Discrete Power Devices & more
- Towards Integration: GAN Power ICs
 - Monolithic integration
 - GANIC demonstrator
 - Extended GANIC platform

Discrete Power Devices & More

Discrete Device Development

Low Voltage Platform 40V/100V

P-GaN gate with Schottky contact TiN/W gate No gate field plate Planarized back-end:

- Oxide CMP
- W-plugs

High Voltage Platform 200V/650V

P-GaN gate with Schottky contact TiN electrode and Al-base gate metal Gate field plate Conformal back-end:

- Field plates closer to 2DEG
- Low-cost

*N. Posthuma, et al, An ind-ready..pow tech, ISPSD 2018, doi: 10.1109/ISPSD.2018 .8393658

Device Architecture

Discrete devices on Si

GaN-IC devices

- Basic device architecture is based on a pGaN gate type E-mode HEMT
- Same field plate configurations
- During deep trench isolation, an additional IMD planarization after Metall is done in GaN-IC platform
 - Difference SiO₂thickness between Metal1 and Metal2

GaN Bidirectional Switch

Microscopic image of a dual gate bidirectional switch

*G. Baratella, U. Chatterjee *et al*, "Monolithic 650V dual gate p-GaN bidirectional switch" IEEE TED, 10.1109/TED.2024.3456077.

Towards Integration: GaN Power ICs

public

Monolithic Integration

Technological Challenges

Discrete devices : V_{SR} = 0 Volt

- Back-gating effects
- Low-voltage analog circuits that integrates with device
- Suitable passive components

Example for Vin = 400 Volt.

When HS switch is ON, and
LS switch is OFF:

VS_LS = 0 Volt

VSB_LS = 0 Volt

VS HS ~ 399 Volt

- Current in substrate
 - Disconnect substrate from Source_HS, then VSB = 399 Volt

GANIC Solution

SOI substrate for isolation

*X. Li, *et al*, "200V enh..integration" IEDM,38.7 (2017): 918-921.

Monolithic Integration: Circuit level challenges

- No complementary device
 - Use RTL based design
 - Trade-off between switching speed and power dissipation in dimensioning the resistors
- Difficulties in driver design
- Difficulties in logic gates/analog sub-circuits

- RL increases => gain & transition delay increases
- RL increases => Vol & power dissipation decreases

GANIC Demonstrator:200V GANI GANIC CO.

200V Asymmetric Half-Bridge switch with integrated driver for synchronous power converters

*U. Chatterjee, et al, Elsevier SSE, https://doi.org/10.1016/j.sse.2023.10 8707

GANIC Demonstrator:650V GANI

Monolithic Royer-circuit switching cell

*M. Rueß, University of Stuttgart, WIPDA 2023

400V, 1MHz, 200W high-efficiency totem-pole PFC converter

*M. Basler, N. Deneke, University of Hannover, IEEE Open J. Pow. Electron. 2023

Access through MPW service

Monolithically Integrated Dual Half-Bridge Converter

*J.Grobe, University of Aachen, 2023

http://europractice-ic.com/mpw-prototyping/power-electronics/

Extended GANIC Platform

Transfer Characteristics

- *T. Cosnier, et al, IEDM 2021, doi:10.1109/IEDM19574.2021.9720591
- *O. Syshchyk, *et al*, ESSDERC 2022, doi:10.1109/ESSDERC 55479.2022.9947150, 2022
- *P. Vudumula, et al, SSE 2023, doi:org/10.1016/j.sse.2022.108496

IMEC (founded in 1984)

- World-leading R&D center in nanoelectronics
- International top talent in a unique
 2B€ leading-edge fab infrastructure
- Delivering industry relevant technology solutions serving ICT, Healthcare and Energy markets serving 600+ companies
- >500 M€ R&D budget, 85% direct from industry
- **5000+** people
- **HQ** in Leuven, Belgium
- 8 sites worldwide

- Some text here
 - Or here
 - Or here
 - Or here
 - » Or here

Or here some other text

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu