

ENERGIZE – EU-ROK collaborative project to enable energy efficient neuromorphic twodimensional devices for edge computing

Dmitry Chigrin, AMO GmbH, Aachen, Germany

Foundation of Korea

Funded by the European Union

What

Energy-efficient Neuromorphic 2d Devices And Circuits For Edge Al Computing

Expertise

Materials, Devices and **Circuit Modelling**

NERG

UNIVERSIDAD DE GRANADA UNIVERSITÀ DI PISA

High-quality Material Growth

EPFL

Advanced Device Fabrication

KOREA

Cutting-edge Circuit Design **SOGANG** UNIVERSITY I S

2D Devices and Circuits for edge Al computing

ENERGIZE's vision is to leverage the potential of **wafer-scale**, **2D materials-based neural networks** to develop energy-efficient neuromorphic devices and circuits for edge AI computing.

National Research oundation of Korea

Machine Learning and Artificial Intelligence need new hardware -> Neuromorphic Computing

Source: SRC Decadal Plan, 2020

National Research

Foundation of Korea

Sebastian et al., Nat. Nanotechnol., 1–16, 2020

Spiking Neural Network

Why

Adapted from: X. Zhang *et al.*, physica status solidi (a). 215, 1700875 (2018).

Funded by the European Union

lational Research

oundation of Korea

- AMO GmbH (AMO)
- Universita di Pisa (UNIPI)
- Universidad de Granada (UGR)
- Ecole Polytechnique Federale de Lausanne (EPFL)
- Sungkyunkwan University (SKKU)
- Korea University (KU)
- Gwangju Institute of Science and Technology (GIST)
- Sogang University (SGU)

Simulation and Modelling

Objective:

• To provide a multiscale simulation approach for the study of devices for neuromorphic electronics, spanning from atomistic to large scale circuit emulations.

Partners:

- UNIPI: Atomistic <u>simulations</u> of 2DMs, multiscale transport simulation of devices up to circuit level.
- UGR: <u>Simulation</u> of 2DMs, devices and circuits, compact modelling of devices and validation.

ational Research

oundation of Kore

5

2D Materials

Objective:

 To develop wafer-scale growth of multilayer 2DMs, including semiconducting TMDCs, insulating hBN, and ferroelectric α-In2Se3, for neuromorphic devices and circuits.

Partners:

- EPFL: Devices and circuits <u>fabrication</u> based on 2DM, electrical and optical <u>characterization</u>
- SKKU: Wafer-scale, high-quality 2DMs growth, qualitative and quantitative characterization of the materials, three or more terminal memtransistor array and its application for neural network.

2D-based Devices

Objective:

To establish reliable fabrication and characterization processes for 2D twoterminal and three-terminal devices.

Partners:

- AMO: Fabrication of devices based on 2DMs, 2DM film deposition, material and device characterization
- EPFL: Devices and circuits fabrication based ۲ on 2DM, electrical and optical characterization

Large-scale Synapse Array

Objective:

- To develop 2D two-terminal and threeterminal arrays with reliable performance.
- To implement a neuromorphic system that integrates 2DM-based neurons and synapses

Partners:

- KU: Non-volatile memory, <u>memristor</u>, memristive <u>array</u>, reservoir array, 1D/2D <u>heterojunction</u> device.
- GIST: Neuromorphic <u>circuits and systems</u> <u>design</u> employing memristive devices.
- SGU: <u>Neural network</u> compression, digital circuit design, software-to-hardware mapping, <u>software-hardware co-</u> <u>optimization</u>.

EPFL & SKKU

National Research

oundation of Korea

Synapse device based VMM Circuit Design

Gwangju Institute of Science and Technology

Large-scale synapse array

8

Atomistic simulations of of Point Defects and Grain Boundaries in Resistive Switching Mechanisms of 2D Transition Metal Dichalcogenides

conductivity change; metal atom intercalation is crucial

Trade-off: Grain boundaries can lower switching voltage but also reduce the switching ratio

M.D. Ganeriwala et. al., ACS Applied Nano Materials (2024), 7(21), 24857-24865 M.D. Ganeriwala et. al., Nanoscale (2025) (accepted)

Au

Coordinate (Å)

Energy (eV) 4 9

UNIVERSIDAD

DE GRANADA

In-house tools for mesoscopic numerical simulations (contact: <u>agodoy@ugr.es</u>)

 $\vec{\nabla} \cdot \left(\varepsilon \, \vec{\nabla} \, V\right) = -\rho$ $\vec{\nabla} \cdot \vec{J}_{n} = \vec{\nabla} \cdot \left[q\mu_{n}n \, \vec{\nabla} E_{F,n}\right] = +q \frac{\partial n}{\partial t}$ $\vec{\nabla} \cdot \vec{J}_{p} = \vec{\nabla} \cdot \left[q\mu_{p}p \, \vec{\nabla} E_{F,p}\right] = -q \frac{\partial p}{\partial t}$ $\vec{\nabla} \cdot \vec{J}_{i} = \vec{\nabla} \cdot \left[-z_{i}qD_{i}e^{-s_{i}\Phi} \, \vec{\nabla} \left(c_{i}e^{s_{i}\Phi}\right)\right] = -z_{i}q \frac{\partial c_{i}}{\partial t}$

In-house simulator for coupled ionic-electronic simulations. Showing the working of ferroelectric-like device as memristor

J. Cuesta-Lopez et. al. J. Appl. Phys. 2024, 136 (12), 124501

In-house simulator to analyze 2DM-based heterojucntion as photodectors

A. Diaz-Burgos et. al. ESSERC. 2024

000

National Research

oundation of Korea

Fully multiscale simulator for Ferro-eletrics 2D-based devices

11

Foundation of Korea

Funded by the European Union

Ion Transport in lateral layered MoS2

- Lateral Pd-MoS₂-Ag/Al memristors
- Variation of the gap size

Jimin Lee *et al., IEEE EDTM 2025* (Poster WP-19) Cruces *et al.*, Small Science, 2025

Forming-free operation for gaps < 2 μm

Threshold Resistive Switching in hexagonal Boron Nitride (h-BN)

- Threshold RS with low currents in HRS
- DC endurance of ca. 600 cycles
- Mean $V_{set} = 1.96 \pm 0.10 V$

Völkel *et al.*, Adv. Funct. Mat. 2024 Völkel *et al.*, IEEE SNW, 2021

Highlights

- Wafer-scale fabrication of MOCVD MoS₂-based memristors
- Back and top electrodes patterned via e-beam evaporator and lift-off
- Wet tranferred MoS₂ patterned via RIE etching

lational Research

oundation of Korea

- Threshold and nonvolatile behavior depending on current compliance *I*_{cc}
- Two stable nonvolatile regimes
- Low voltage threshold, set and reset voltages within ± 1 V

Fa et al., MemriSys 2024

Energy-efficient Neuromorphic 2d Devices And Circuits For Edge Al Computing

Thank you

Chipsju

National Research Foundation of Korea

Funded by the European Union

Gwangju Institute of Science and Technology

Università di Pisa