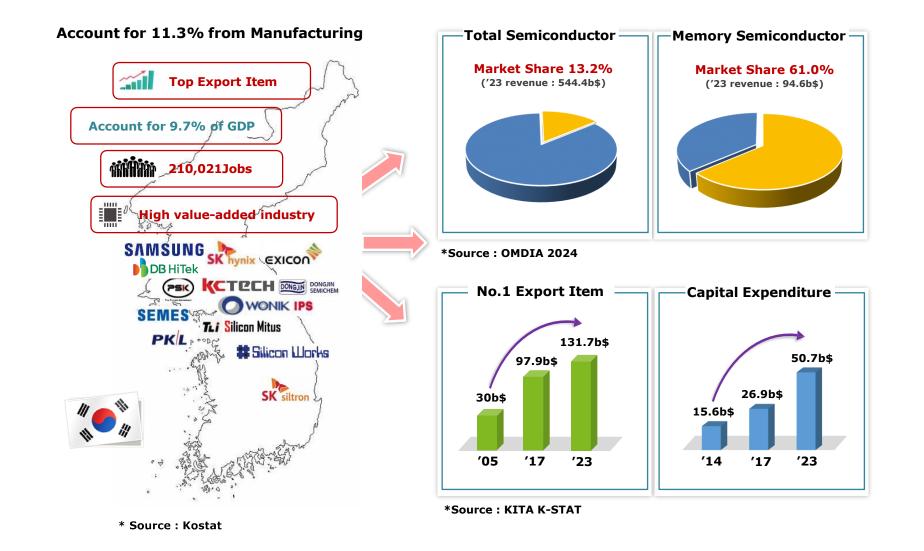


International Collaboration Program of Korea in Semiconductor R&D

2025. 6. 16.

Ryu, Sang-Wan

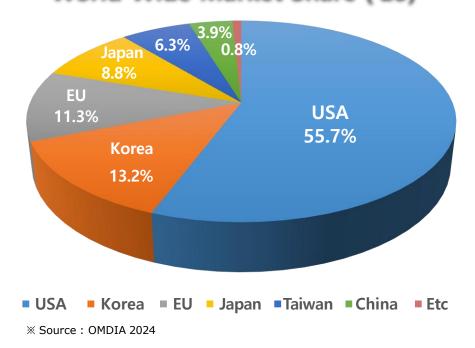
Director, Semiconductor & Display Division National Research Foundation of Korea (NRF)

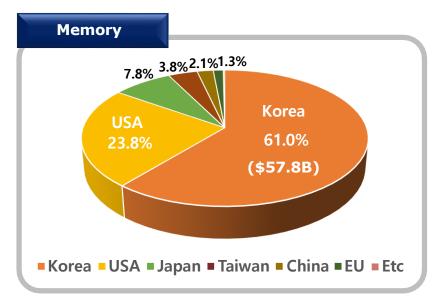

1 Introduction of Korean Semiconductor Industry

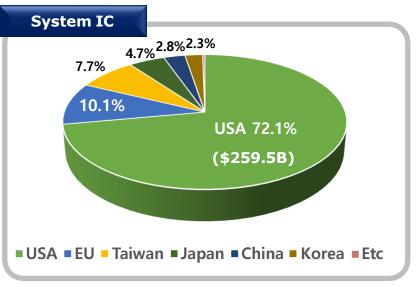
2 Government R&D Policy

3 Semiconductor Int'l Joint R&D of MSIT

4 Future Plan


Korea Semiconductor Industry Overview




State of Korean Semiconductors

- Korea's market share in the global semiconductor industry was 13.2% in 2023
- Korea's market share in the system IC global market was 2.3% while in the memory market was 61.0% in 2023

World Wide Market Share ('23)

X Source: OMDIA 2024

Korea Semiconductor Strategies

Infra

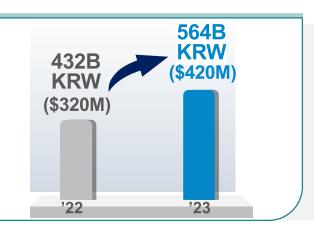
Cluster

- Memory & foundry factory expansion
- Build new industrial complex for ma terials, parts, equipment sectors Bu
- ild foreign business cluster
- Establish fabless business cluster called "Fabless Valley "

- Tax Benefits for R&D and Infra Investment
- Fundraising to support facility Investment
- Regulatory rationalization
- Support for water, electricity & wastewater management

`21 - `30 Investment \$500B+

Value Chain


- HR training support
- Cooperation & solidarity systems setup
- Support for next-generation power semiconductor

Risk Reduction

- Enacting Special Legislation for Semiconductor Industry
- Reinforcement of domestic supply chain
- Prevention of technology leaks
- Reduction of greenhouse gases

Government R&D invest

● In 2023, the government plans to invest KRW 564 billion=\$ 420 million(up 30.4% YoY) in overall semiconductor

R&D Roles of Ministries

- MSIT(Ministry of Science and ICT): Development of fundamental and emerging semiconductor technology
- MOTIE(Ministry of Trade, Industry and Energy): Development of applied semiconductor technology

Funding Agency

- National Research Foundation of Korea (NRF))
 - Planning, Selection, Evaluation, and Management of R&D projects funded by MSIT

Semiconductor Innovation Programs of MSIT

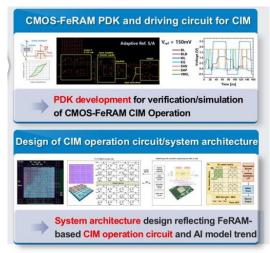
To Support Semiconductor Research and Industry (in 2023)

	Program	Budget
R&D	 Next-generation intelligent semiconductor technology Processing-in-memory AI semiconductor technology National semiconductor laboratory AI semiconductors for autonomous driving 	125 M\$
Manpower	 Training & Development of System IC Expertise Highly experienced professional consultancy Al semiconductor innovative talent development 	16 M\$
Infra	 Inter-university semiconductor research center Semiconductor testbed facility Nano Fab center 	23 M\$
Incubation	 Al semiconductor innovative enterprise Implementation of Al semiconductors Global ICT innovation clusters 	19 M\$

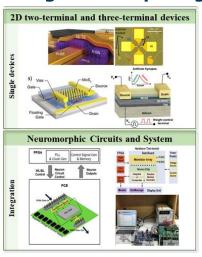
International Collaboration Programs

Semiconductor international Joint Research of MSIT (on-going)

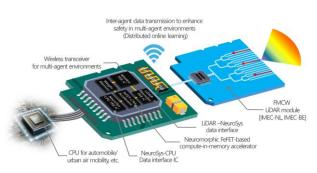
ROK-US	ROK-EU	Open Int'l Collaboration
Agency: NRF-NSF	 Agency: NRF-Chips JU 	Agency: NRF
 Scope 	Scope	Scope
- semiconductors	- Heterogeneous integration	- semiconductors
(device, design,	- Neuromorphic computing	- display
process, packaging)	• # of Awards: 4	• # of Awards: 8
• # of Awards: 6	• Budget: 1.5M€ (each)	 Budget: 386k\$
 Budget: 677k\$ 	Period: 3 years	Period: 2 years
Period: 3 years	 Mutual Award Funding 	 Awards from Korean
 Supplementary to NSF 		government only
awards		


^{*}New Int'l collaboration will start from July, 2025 open to all foreign countries. (6 projects)

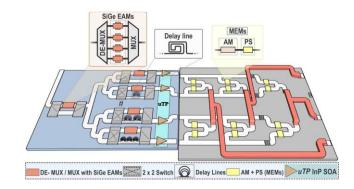
Partners of Semiconductor International Collaboration


ROK-EU Collaboration Research Projects

O 3D FeRAM integrated circuit/architecture for low-power and high-performance CIM (ViTFOX)


- Dae Woong Kwon, Hanyang Univ
- **Description** Laura Begon-Lours, ETH
- Ferroelectric-augmented intell igent semiconductors technol ogy
- Applied for vision transformer

Energy-efficient neuromorphic 2D devices and circuits for edge AI computing


- **Signatural** Kim, Sungkyunkwan Univ.
- Max Christian Lemme, AMO GmbH
- 2DM-based neuromorphic technology
- Targeting wafer-scale production
- Applied for complex neural networks

Neuromorphic Computing Systems for Heterogeneously-Integrated Silicon Photonics (LiDAR)

- Jong Hyeok Yoon, DGIST
- Ruud Oldenbeuving, IMEC-NL
- FeFET-based CIM accelerat ors
- PIC on reservoir computing
- Applied for FMCW LiDAR

Heterogeneously Integrated Multi-Material Photonic Chiplets for Neuromorphic Photonic Transfer Learning AI Engines

- Sang Yoon Han, DGSIT
- Nikolaos Pleros,
 ARISTOTLE UNIVERSITY
 OF THESSALONIKI
- low-energy statically-wei ghted photonic neurons
- energy-efficient photonic neuromorphic hardware

Enhanced Activity of ROK Researchers

- ROK became an Associate Country of Horizon Europe starting Jan. 2025.
- Enables Korean researchers to participate in Horizon Europe program on equal footing with EU member states.
- New multilateral funding programs will be strategically developed to support international research collaborations.

Semiconductor Researchers Forum

- Bring Semiconductor Researchers from ROK and EU together for Discussion & Networking
- EU hosted 1st Forum in Brussel, 2024. ROK hosts 2nd Forum in Jeju, 2025.
- Next ROK-EU Researchers Forum is being discussed

Thank You

Contact point

Name: Ryu, Sang-Wan

Email: sangwan@nrf.re.kr

Tel: +82-42-869-7730

