

WORKSHOP

Key Emerging Technologies for future

Industrial Applications

The first iteration

Salahuddin Nur and Ryoichi Ishihara

Delft University of Technology

Semiconductor standards

Why do we analyze?

- Growing importance of semiconductors for European industry and society
- Strengthen EU's position in global value chains in semiconductor: EU Chips Act
- Semiconductor standardization = Critical to ensure interoperability, efficiency and technical leadership

- Identify and map the gaps in existing value chains potentially induced by a lack of international standards
 - provide a set of recommendations for standardization activities
- Identify needs of new standards for emerging technologies, for which value chains are under construction
 - provide specification of these needs and potential recommendations
- Recommendation on Standardisation (July 2025)
 - Now it is working in progress!

Approach

- List devices and process steps
 - Aeneas, input from ICOS WP3
- Form a technical working group (TWG)
 - ICOS, StandICT.eu and AllPROS.eu
- Identify standard development organizations (SDOs) and working groups
- List and classify the standards (~2500!) into types of devices, process steps and applications
- Analyse the statistics and identity and map the gaps

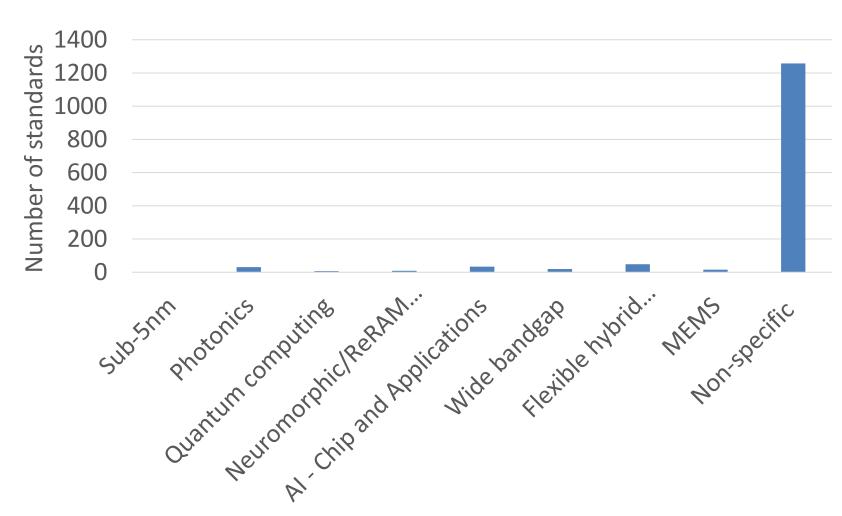
Original classifications

							Front-End	<u> </u>	Software	
	Material	Equipment		IC Design			Fab.	Services	provider	tech.
		Front-End	Back-End							
		Equipment &	Equipment		IP	Whole				
<u>Devices</u>		Services	& Services	EDA	Blocks	IC				
Al				Χ	Χ	Χ			Χ	
Chiplets / Advanced										
packaging	Χ		Χ	Χ		Χ	Χ	Χ	Χ	
Energy efficiency										
and sustainability	Χ	X	Χ	Χ		Χ	Χ	Χ		Χ
Sub-5nm	Χ	Χ		Χ		Χ	Χ			
Advanced Litho.	Χ	X		Χ		Χ	Χ			
Quantum computing	Χ	X	Χ	Χ		Χ	Χ	Χ	X	Χ
Neuromorphic/ReRA										
M/AI chip	Χ			Χ	Χ	Χ	Χ			
Edge computing	Χ		X	Χ	<u>X</u>	Χ	Χ	Χ	X	Χ
Photonics	Χ		X	Χ	Χ	Χ	Χ	Χ	X	Χ

Cybersecurity

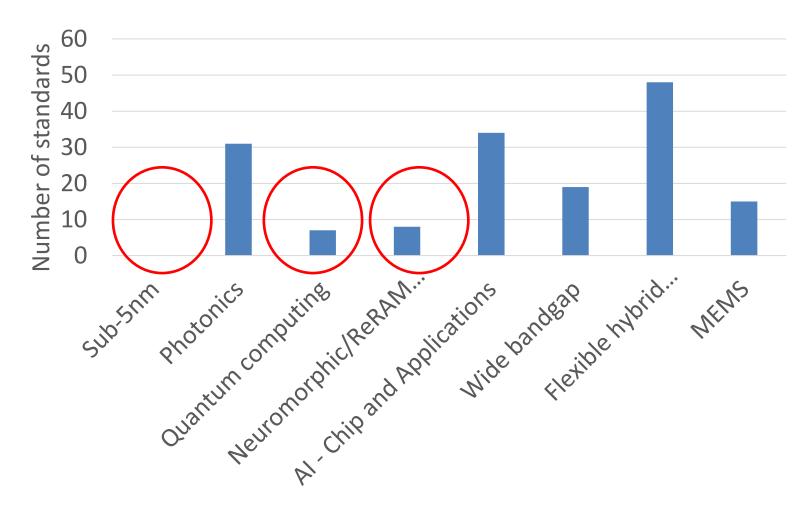
SDOs Classifications: Applications

New Classifications


E C	Mate rials	Equipment Front-End and services	Equipment Back-End and services	IC Design EDA tools and services	IC Design Blocks	IC Design Whole IC	Front-End Fabrication
Sub-5nm							
Photonics							
Quantum computing							
Neuromorphic/ReRAM/AI Chip							
AI - Applications							
Edge & Cloud computing - Applications							
Wide bandgap							
Flexible hybrid electronics							
MEMS							
Generic							

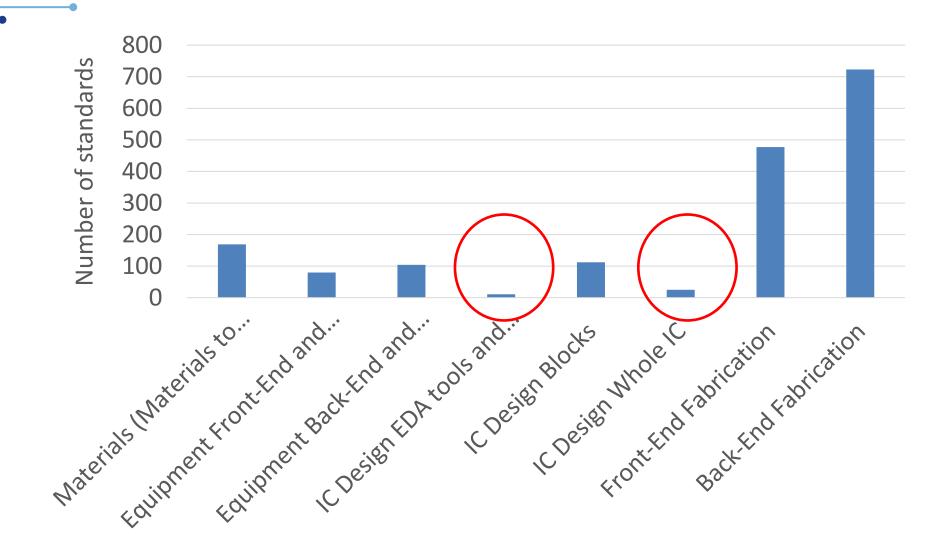
Advanced Lithography, Chiplets/advanced packaging and Energy efficiency & sustainability are included in the process steps

standardizations vs devices



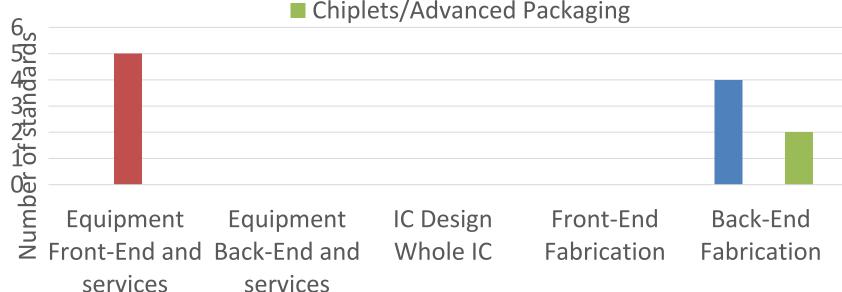
standardizations vs devices

w.o. non-specific devices


Observation: Devices

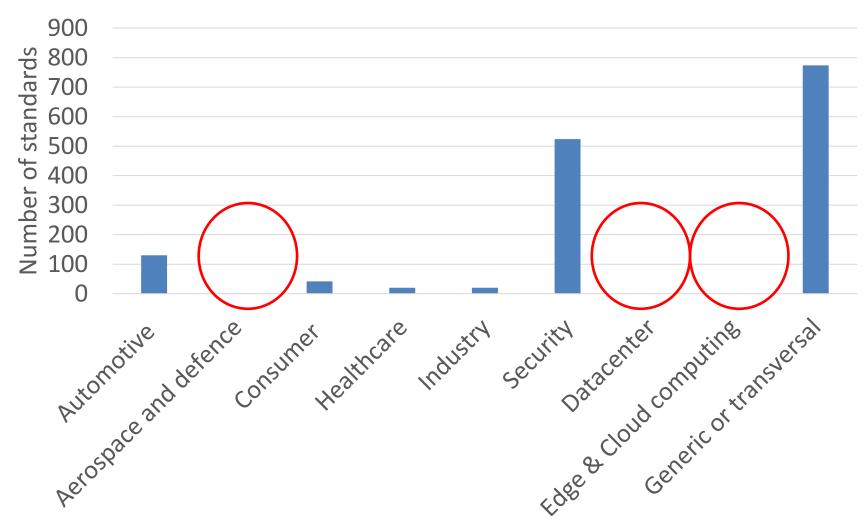
- Moderately covered for photonics/AI/Flexible-hybrid electronics/Wide-bandgap/MEMs devices.
- Lack in emerging devices (sub-5nm, quantum, neuromorphic)
 - Did not analyze IEEE yet
 - Difficult to identify from abstract
 - Needs deep dive in Non-specific devices
 - SDOs not identified
 - Potentially the gap

Observation: Process Steps


- Well covered for Front/backend fabrication
- Somewhat limited for Front/backend equipment
 - Difficult to distinguish between Equipment and Fabrication
- Very few for IC design tool and IC whole design
 - Did not analyze IEEE yet
 - Potentially the gap

standardizations vs process steps for emerging technologies

- Energy efficiency & Sustanability
- Advanced Lithography
- Chiplets/Advanced Packaging


Observation: Process steps for emerging technologies

- Very limited numbers of standardization for Energy efficiency & sustainability, Advanced lithography, and Chiplet/Advanced Packaging
 - No IEEE analysis yet
 - Missing SDOs
 - Hidden in the generic process steps
 - Potentially the gap

standardizations vs applications

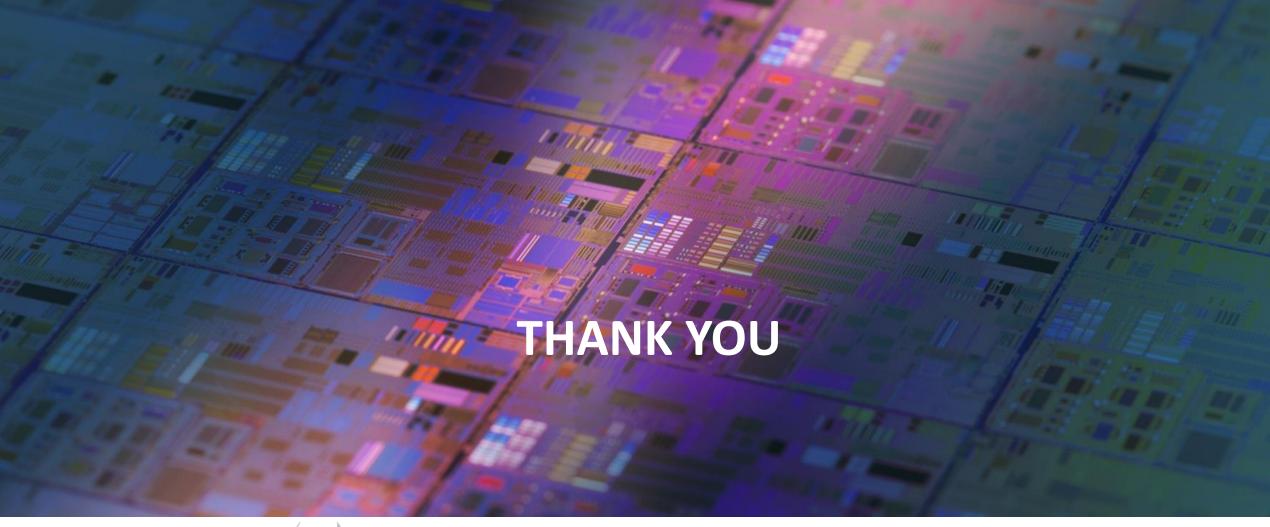
Observation: Applications

- Well covered for Generic/Transversal and Security
- Limited for Automotive/Consumer/Health/Industry
 - Included in Generic/Tranversal
- None for Aerospace&Defense/Data center/Edge
 - No IEEE analysis yet
 - Included in Generic/Transversal

Conclusions

- The first round of semiconductor standardization landscape analysis has been performed.
- AI/Photonics/Flexible devices and Front/Backend fabrication process seem to be covered moderately well.
- Coverages in sub-5nm/quantum/neuromorphic devices, advanced litho./chiplet/energy efficiency and sustainability/advanced packaging, and IC design tool/whole design steps are very limited.
 - Hidden in IEEE standards and/or generic devices/process steps
 - Missing SDOs
 - Potentially the gaps

Outlook


- Find SDOs/WG for the emerging devices/process steps and potential national activities
 - Interview with experts
 - Organize a webinar
- 2nd iteration
 - Analyze the IEEE standards (~2500 entries)
 - Deep dive into Non-specific devices/process standards
 - Add new (sub) classifications, e.g., energy harvester
- Increase granularity of the analysis map (device vs. process steps) and identify the gaps
- Produce specifications and recommendations
- Finalize the report in July

Acknowledgement

- Silvana Muscella, Barbara Iryde, XiaoRui Zhang, Maria Giuffrida (StandICT.eu)
- Karim Tobich (Cyber Security & Technology Consultancy)
- Thomas Reibe (EU)
- Patrick Cogaz and Vincent Le Meau (Aneas)
- Abhishek Ramanujan Analog devices
- Gianluca Milano Intrim
- Richard Pitown ResolutePhotonics
- AllPROS.eu, VLC Photonics, Grenoble-inp, IMT, ADAPT Centre and others

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu