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Semiconductor Industry Outlook

1 Global semiconductor industry projected to become

a trillion-dollar industry by 2030

(Source: McKinsey & Company)

= 55 years to become a 0.5T industry
= Expected to double in the next 10 years
* Drivers: Computing/Storage, Wireless,

Automotive, ....

1 2022: Indian Semiconductor Mission
= Establish Onshoring Capabilities and Indian

| eadership
= $11B Investment

The overall growth in the global semiconductor market is driven by the
automotive, data storage, and wireless industries.

Global semiconductor market value by vertical, indicative, $ billion
CAGR, 2021-30, % Growth contribution per
7 1,065 vertical, 2021-30, %
5

60 Wired communica tion
95 Consumer electronics 10

130 Industrial electronics 16

Automotive electronics

590

2021




Distributed Computing and Communications

o Storage, Coordinator of lower levels
o Limitless Compute Power
Cloud o ~8000
o Power: 10s of KWs - 100s of KW
Edge Datacenters
o Base stations, Routers, Switches
| o High Compute Power
NEltieH e Soes o 10-100 million devices
o Power: 10s of W — few KWs
casenones . W W @ W .
} ' |
Edge Gateways /ﬂ\ D ﬁ o Sensors, Smart Phones, Automobiles
/X\ /«\ f o Billions of devices
o o Power: 10s of mMW — 10s of W




Where are we & what is needed to move ahead?
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H.-S. Philip Wong, et al, “A Density Metric for Semiconductor Technology”, Proceedings of the IEEE, April 2020
Current State of the Art —

« Monolithic logic 108 transistors/mm?
« DRAM 109 transistors/mm?

* 10 density 10* I0/mm?

« SRAM Access 20-50 TBps

10-100X increase in transistor densities
Interconnect densities10° and higher (100X)

— Energy per bit (EPB) reduced to femto-joules/bit
500TBps/mm? of bandwidth (10X increase)
Wireless communication at 1Tbps




Heterogeneously packaged embodiment
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Where are we & what is needed to move ahead?
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The big picture

* With continuous scaling, opposite impact is seen on distributed resistance-capacitance (rc) product for transistors and
interconnects.

» For current and future technology nodes, interconnect delay cannot be ignored and is considered to dominate over
transistor delay.

« Majority power dissipation in current microprocessors is due to interconnects.

Sodrce: R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nature Photonics, vol. 1, pp. 303-305,




The Interconnect Bottleneck

Design changes in new technology nodes
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Key observations
Interconnects become longer and thinner
* Increased delay

 More losses
Source: International Semiconductor Technology Roadmap




The Interconnect Bottleneck
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The Interconnect Bottleneck

Current Density and Cross-sectional area Projection
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International Technology Roadmap for Semiconductors, 2015. [Online]. Available: http://www.itrs2.net/itrs-reports.html
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Surface Roughness in Cu Interconnects

Interconnect Scaling

»| Surface
roughness

Grain boundary
scattering

> Resistivity

Interconnect density

Latency and clock
signal distribution

A

Interconnect delay

Signal Crosstalk

High J-demands

Delay L
—> Driver >
— Temperature —

Power dissipation

Reliability
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Source: S Kumar and R Sharma, “Analytical Model for Resistivity and Mean Free Path in On-Chip Interconnects with Rough Surfaces”, IEEE
ansactions on Emerging Topics in Computing, 2016.
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Surface Roughness in Cu Interconnects

pe Planar inferconnect line

Driver

Edge
roughness of
TSVs further

increases
delay and
losses.

Conductor
loss and delay
increase due
to surface
roughness

Microbumps
and TSVs
contribute to
delay and
insertion loss
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Surface Roughness in Cu Interconnects
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% Surface roughness is a random process characterized by rms height, slope, curvature etc.
% Statistical parameters strongly depend on the resolution and scan length of the instrument used to measure the

roughness and hence are not unique for a particular surface.
% Fractal approach is used to define the natural rough surface because this approach is instrument independent

and is scale invariant.

S. Kumar and R. Sharma, "Analytical Modeling and Performance Benchmarking of On-Chip Interconnects with Rough Surfaces," IEEE
Fansactions on Multi-Scale Computing Systems, 2018.
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Surface Roughness is a Problem
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Insertion loss as a function of frequency for a Attenuation as a function of frequency for a 10mm
10mm long Cu chip to chip interconnect (w = long Cu chip to chip interconnect (w = 75um, t =
75um, t = 8um, h = 10um). 8um, h = 10um).
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Variation in Local Resistivity Surface
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Local resistivity of 7 nm local/Intermediate line as a function of width for different RMS value of roughness
(@)D=1.1and (b) D=1.6. T =300 K.
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Effective Resistivity and Mean Free Path
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(a) Effective resistivity of Global Interconnects for different technology nodes and different values of D (b) Effective mean free path of
Global Interconnects for different technology nodes and different values of D.

Source: Somesh Kumar and R Sharma, “Chip-to-Chip Copper Interconnects with Rough Surfaces: Analytical models for Parameter Extraction and




Computational Complexity

Case 3 V : Case 4 ]

3D view of mesh generated in HFSS. (a) Case 1(Smooth
line, D = 1.0) (b) Case 2 (Only top and bottom surface
rough, D = 1.1) (c) Case 3 (all four surfaces rough, D =
1.1) (d) Case 4 (all four-surface rough, D = 1.6).

Case 3 Case 4 Eiw .

3D view of volume current density generated in HFSS (a)
Case 1 (Smooth line, D = 1.0) (b) Case 2 (Only top and
bottom surfaces are rough, D = 1.1) (c) Case 3 (all four
surfaces are rough, D = 1.1) (d) Case 4 (all four surfaces
are rough, D = 1.6).
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Signal Integrity Analysis
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Thermal Impact on Interconnects

Line Depletion

Ta/TaN
liner layer

Metal2 Cu

Void
SiN, NSiC
cap layer

Aggressive interconnect scaling has resulted in
increasing current densities and associated

Low-k
dielectrit

thermal effects Via Depletion N
TalTa
T Metal2 Cu J.———1 liner layer
Void ) )
« Reduced feature sizes Ty — ! l S by
* Inhomogeneities in feature size ™ Gieletr

* Higher current density Rise in
. . . Resistivity
» Joule heating and varying thermal profiles

Thermal effects in interconnects have become a Rise in Increased
. T . ; power
serious performance and reliability constraint scattering density

Rise in
Source: T. Gupta, Copper Interconnect Technology, Springer temperature

Joule heating




Causes of Thermal Issues

Electrical and thermal conductivity of thin films reduce due to
« Aggressive carrier scattering

« Carrier-carrier scattering, carrier impurity scattering, and carrier imperfection scattering

are combinedly called bulk scattering.

Carrier Carrier Carrier Surface Grain

Carrier Scattering Impurity Scattering Imperfection Boundary Scattering Boundary Scattering
Scattering

S UNGSR

Different scattering mechanism in Cu

With scaling thermal conductivity of materials reduces due to more impurity, disorder and
grain boundaries.

With scaling thermal conductivity of materials reduces due to boundary scattering, phonon
leakage, and related interactions.

__+ Generally affects the in-plane and cross plane thermal transport.
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Copper Graphene Hybrid Interconnects

Conventional barrier layer possesses very
high resistivity leading to creation of void and
hillocks.

Graphene and Cu in some sort of hybrid
heterogeneous structure can bring potential
benefits of reducing Cu electromigration and
diffusion.

Graphene as a barrier layer changes the
diffusion path from surface to grain boundary.

Graphene as a barrier layer enhances the
elastic surface scattering.

R Kumar and R Sharma, "A Temperature and Dielectric Roughness-Aware Matrix Rational
Approximation Model for the Reliability Assessment of Copper— Graphene Hybrid On-Chip
Interconnects," IEEE Trans. on Components, Packaging and Manufacturing Technology, 2020.

tg Ilk

N

Wg

Cu line with diffusion barrier

Resistivity for different barrier layers at 22, 13, and 7 nm

Graphene Capping Layers

I

Thickness 2nm 1.2 nm 0.6 nm
Ta Barrier Layer (pr,) | 278.6%108 433.2x10-8 | 852.4x10-8
W Barrier Layer (pw) 65.1x10-8 100x10-8 194.2x10-8
MLGNR Barrier Layer 8%10 10.22%108 14x10%
(PmLc)
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Copper Graphene Hybrid Interconnects

Cu Cu-Graphene
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» The EM activation energies for pure Cu
and graphene capped Cu are found to be
0.76 eV and 1.23 eV.

» This indicates that the Graphene barrier
layer successfully suppresses the surface
migration of Cu atoms.

» Dominant diffusion path of Cu atoms is
shifted from the surface to the grain

boundaries of the Cu line.

» Grown Graphene over Cu results in
morphological change in Cu lines.

» As the Graphene is grown over Cu grain
sizes increases substantially.

» Increment in grain size leads to reduction
in grain boundary scattering.
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Copper CNT Hybrid Interconnects

L V Copper
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Copper CNT Hybrid Interconnects
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Copper CNT Hybrid Interconnects

7 Cu-CNT
GNR 'E 0601 Copper
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2 050+
CNT 3 0.45
Q 0.40:
2 :
GNR o 0.35-
Cu-GNR Cu-CNT Cu-Carbon S o0l
Hybrid Composite Hybrid e -
O 0254
360 ' 3;0 ' 4(')0 ' 4;0 ' 560
Temperature (K)

» Cu-GNR Hybrid Interconnect: Graphene acts as the barrier layer over copper interconnects.
» Cu-CNT Composite Interconnect: Copper is electrodeposited over a bundle of CNTs
» Cu-Carbon Hybrid Interconnect: Graphene acts as the barrier layer over Cu-GNR interconnects.




Revisiting the Interconnect Bottleneck

Current Density and Cross-sectional area Projection
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Co-design for Heterogeneous Integration

Design

Materials

Processes

Environments

Embedded Passives Embedded Die  Embedded Bridge TMVs

Device Packaging Bonding Interposers Interconnects
Wafer Level Packaging Flip Chip Organics = C4, Microbump’s, Cu-Pillar
3D PoP, 3D-IC (Die Stack) ‘ Thermo-Compression Silicon . RDU's, TxVs, Optical |
SIiP, QFN, BGA, Hybrids... ‘ Hybrid Direct Bonding | Ceramics . Cu-Cu (bumpless)

Electrical
Thermal

Mechanical

Reliability
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Co-design for Heterogeneous Integration

TODAY

Future

Chip Package System
Design Design Design

Co-Design
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Electrical
Model &
Analysis

Thermal
Model &
Analysis

Mechanical
Model &
Analysis

Modelling & Simulation

Thermal Mechanical
Analysis Analysis

Electrical
Analysis

Multi-Physics

EEEEEEEEEEE
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Uncertainty Quantification

Uncertainty propagation
>

Uncertain parameters
(Temperature, geometrical‘

dimensions etc.)

System

—

Variability in temperature

v

Systematic

[Tmina Tmax]

f(X)=

1

Output becomes a
random variable!!

v

Stochastic
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o2r

X
.
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Methodologies for Unciertainty Quantification

l |

Pseudorandom sampling Surrogate models/metamodels
(Monte Carlo) I
Machine learning Spectral expansion

Targets of uncertainty quantification:
» To evaluate mean and variance of the outputs.
» To evaluate the reliability of the outputs.

» To assess the complete probability distribution of the outputs.
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Surrogate I\I’odelslMetamodels

l l

Machine learning Spectral expansion
— Artificial neural networks — Karhunen-Loeve expansion
Support vector machines *— Generalized polynomial chaos
expansion
v |ldentification of trends and patterns v" Optimal accuracy
v' Scope of improvement v' Time efficient
x Data acquisition x Curse of dimensionality
x Algorithm selection x Uses polynomials — cannot capture high

x High error susceptibility non-linearity
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Summary

The growth of semiconductor industry will be governed by aggressive energy

aware design
* Miniaturization will cease to pay dividends

Functional 2D materials offer promising prospects; however, their acceptance by
iIndustry is thwarted by process constraints

Surface roughness in Cu global interconnects needs to be address at higher
frequencies and lower technology nodes

Heterogeneous integration of packages and systems will require greater effort for

co-design and co-analysis
» Electrical, thermal and mechanical issues will coexist in next generation packages
« Continue to pose serious challenges to overall system reliability

32



Thank You ©

Q&A Session




