

AI-ENABLED SMART AND SECURE ELECTRONIC SYSTEMS DESIGN AND INDIGENOUS ELECTRONIC DESIGN AUTOMATION TOOLS FOR VIKSHIT BHARAT 2047

Dr. Gaurav Trivedi

Electronics and Electrical Engineering Indian Institute of Technology Guwahati trivedi@iitg.ac.in

OUTLINE

• Design

- Wearable Healthcare Devices
- Post Quantum Cryptography Coprocessor
- Secure AI SoC
- Neuromorphic Computing Core
- Roadmap
- Electronic Design Automation (EDA)
 - Analog/RF Circuit Simulator
 - TCAD Simulator
 - Floorplanning, Placement and Routing Engine
 - Power Analyzer
 - Roadmap

Advanced ESDM Workforce Development

Roadmap

WEARABLE HEALTHCARE DEVICES

https://www.researchgate.net/publication/349774075_Smart_wearable_devices_in_cardiovascular_care_where_we_are_and_how_to_move_forward/figures?lo=1

LOWERS OPERATIONAL COSTS AND REDUCE NUMBER OF VISITS TO HOSPITALS

Classifier

Classifier

- Cardiovascular Disease Detection and Prediction
 - Detect different types of cardiac arrhythmia
 - Predict ventricular arrhythmia before its occurrence
 - Detect severity stages of Myocardial Infarction
- Multi-Lead ECG data compression

WEARABLE HEALTHCARE DEVICES

Parameter	[15]	[16]	[17]	[18]	Proposed
Technology	180nm	180nm	180nm	180nm	180nm
Frequency	1 MHz	1 MHz	NA	0.12 KHz	1 MHz
Supply Voltage	1.8V	1.2V	1.0V	1.2V	1.98V
ECG Features	P-QRS-T	P-QRS-T	QRS	QRS	P-QRS-T
Power	9.47µW	32µW	0.410µW	5.97µW	7.38µW

ECG FEATURE EXTRACTION ARCHITECTURE

WEARABLE HEALTHCARE DEVICES

Parameter	[19]	[20]	[21]	[22]	Proposed
Technology	180nm	65nm	40nm	40nm	180nm
Frequency (Hz)	10k-25M	10k	1M	10k	12k
Supply Voltage	1.8	1	1	1.1	1.98
Power (W)	13.34µ	2.78µ	14.14m	3.76µ	8.75µ
Area (mm^2)	0.9250	0.112	0.135	0.12	1.32
Model	ANN	Naive Bayes	SVM	WLC+SVM	DNN
Evaluation Scheme	Patient Specific (PS)	Class Oriented (CO)	Subject Oriented (SO)	Class Orient ed (CO)	Subject Oriented (SO)
Overall Accuracy(%)	99.39	86	88.06	98.2	91.6
Number of Classes	5	2	3	2	5
					тыміл

EARLY DETECTION OF VENTRICULAR ARRHYTHMIA

Parameter	[19]	[22]	[23]	[24]	[20]	Proposed
Approach	Detection	Detection	Detection	Prediction	Prediction	Prediction
Database	MIT-BIH	MIT-BIH	MIT-BIH	NSRDB, VFDB	MIT-BIH NSRDB	MIT-BIH
Classifier	ANN	SVM	Threshold Ba sed	Decision Tre es	Bayes Naive	DNN
Accuracy	99.68%	98.3%	97.02%	NA	86%	91.61%
Sensitivity	NA	NA	94.64%	95%	NA	91.94%
Specificity	NA	NA	99.41%	90%	NA	91.42%
Platform	ASIC	ASIC	ASIC	Software	ASIC	ASIC
Technology Node	180nm	40nm	180nm	NA	65nm	180nm
Voltage (V)	1.8	1.1	1.8	NA	1V	1.98V
Frequency (Hz)	25M	10k	1k	NA	10k	12.5kHz
Area (mm^2)	0.9246	0.12	NA	NA	0.112	1.8
Power (W)	13.34µ	3.76µ	5.04µ	NA	2.78μ	4.69µ

CLASSIFICATION OF STAGES OF MYOCARDIAL INFARCTION

Parameter	[2ວ]	႞ႍႍႄ႞	[27]	[28]	[29]	Proposed
Platform	Software	Software	Software	Software	ASIC	ASIC
Database	PTB, PTB-XL	РТВ	РТВ	STAFF III	Long Term ST	PTB, STAFF III, PTB-XL
Classes	2	2	2	2	2	5
Sensitivity(%)	91.59	99.97	85.33	83.3	96.43	EMI=84.42 AMI=85.6 CMI=80.2 Non-MI=88.22 Normal=92.46
Specificity(%)	85.89	99.54	84.09	91.7	96.88	EMI=97.3 AMI=96.7 CMI=97 Non-MI=95 Normal=96.3
Voltage (V)	NA	NA	NA	NA	1.8	1.98
Frequency (Hz)	250-1000	250	250	1000	250	8
Area (mm^2)	NA	NA	NA	NA	0.137	1.38
Power (W)	NA	NA	NA	NA	0.274u	5.12u
Classes Sensitivity(%) Specificity(%) Voltage (V) Frequency (Hz) Area (mm^2) Power (W)	PTB-XL 2 391.59 85.89 NA 250-1000 NA NA	2 99.97 99.54 NA 250 NA NA	2 85.33 84.09 NA 250 NA NA	2 83.3 91.7 NA 1000 NA NA	2 96.43 96.88 1.8 250 0.137 0.274u	STAFF PTB-3 5 EMI=84 AMI=8 CMI=8 Non-MI= Normal= EMI=9 AMI=9 CMI= Non-M Normal= 1.98 8 1.38

ECG DATA COMPRESSION

- Design Metrics:
 - Area: 0.0831 mm^2
 - Voltage: 1.98V
 - Frequency: 36kHz
 - Power:2.102uW
- Compression Ratio= 3.857

Parameter	[30]	[31]	[32]	Proposed		
Signals	ECG	ECG	ECG	E	CG	
#Leads	4	1	2		4	
Function	Compression	Compression	Compression	Compression	Decompression	
Туре	Lossless	Lossless	Lossless	Los	sless	
Database	PTB-DB	MIT-BIH	PTB-DB	PT	B-DB	
Technology(nm)	180	90	180	180		
CR	4.067	2.91		3.86		
Voltage(V)	1	1.2	1.8	2	1.8	
Frequency(Hz)	1k	100M	16M	3	6k	
Area(mm^2)	16.4	0.0051	-	0.0813	0.0801	
Gate Count	475.9k	0.4k	9.5k	2442 2412		
Power Consumption(uW)	69.18	18.78	12.7	2.102 1.913		

AN SNN INSPIRED AREA AND POWER EFFICIENT VLSI ARCHITECTURE OF MYOCARDIAL INFARCTION CLASSIFIER FOR WEARABLE DEVICES

Proposed Architecture

AN SNN INSPIRED AREA AND POWER EFFICIENT VLSI ARCHITECTURE OF MYOCARDIAL INFARCTION CLASSIFIER FOR WEARABLE DEVICES

Proposed Architecture

AN SNN INSPIRED AREA AND POWER EFFICIENT VLSI ARCHITECTURE OF MYOCARDIAL INFARCTION CLASSIFIER FOR WEARABLE DEVICES

[]6]	F I 71	ГІЯТ	гіот	F201	Г 217	Г 221	Г 231	F741	Г 251	Г 261	Proposed
[10]	L. / J	[]	L' * J		Lzij	[22]		L≂⊣J	[23]	[₇₀]	Work
Multi lead raw ECG	Multilead Fourier-Bessel Series expansion based empirical wavelet transform	Raw ECG	22 features extracted using variational mode decomposition (VMD)	Spectral and Phase coherence indices	T wave amplitude, Q wave amplitude and ST deviation	Raw ECG	Multi-lead raw ECG	Time domain Features extracted from DWT of ECG	Raw ECG	Multivariate variational mode decomposition of VCG	DWT
GRU	CNN	Stacked Sparse Autoencoder and TreeBagger	KNN	SVM	KNN	CNN	CNN	CNN	CNN+RNN	CNN	SNN
I HB	I HB	I HB	3 and 11 HB	650 Samples	I HB	65 I Samples	65 I Samples	5 sec	512 Samples	651 Samples	650 Samples
8 leads	12 leads	Lead II	Lead 7	12 leads	12 leads	Lead II	12 leads	12 leads	Lead I	3 VCG leads	8 leads
5+HC	6+HC	II+HC	П	6	I0+HC	I+HC	I0+HC	6+HC	I+HC+Noisy+ Other	6+HC	II+HC
Software	Software	Software	Software	Software	Software	Software	Software	Software	Software	Software	ASIC
99.80*	NA	99.95	99.76	97.9	98.67*	95.49	NA	98.14	92.4	NA	99.49
99.96*	NA	99.87	99.96	98.78	98.71*	94.19	NA	99.4	97.7	NA	99.94
99.84	99.84	98.88	99.75	98.85	98.8	95.22	99.78	98.22	97.2	99.86	99.9
NA	99.7	NA	NA	NA	NA	NA	NA	NA	94.6	NA	99.31
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	180 nm
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.98 V
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	250 KHz
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.69
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	268.9
	[16]Multi lead raw ECGGRUGRUI HB8 leads5+HCSoftware99.80*99.96*99.84NANANANANANANANANANANANANANANANANANA	[14][17]Multi lead raw ECGMultilead Fourier-Bessel Series expansion based empirical wavelet transformGRUCNNI HBI HB8 leads12 leads5+HC6+HCSoftwareSoftware99.80*NA99.8499.84NA99.7NA99.7NA	[14][17][18]Multi lead raw ECGMultilead Fourier-Bessel Series expansion based empirical wavelet transformRaw ECGGRUCNNStacked Sparse Autoencoder and TreeBaggerI HBI HBI HB8 leads12 leadsLead II5+HC6+HCII+HCSoftwareSoftware99.80*NA99.9599.96*NA99.8799.8499.8498.88NA99.7NA	[16][17][18][19]Multi lead raw ECGMultilead Fourier-Bessel Series expansion based empirical wavelet transformRaw ECG22 features extracted using variational mode decomposition (VMD)GRUCNNStacked Sparse Autoencoder and TreeBaggerKNNI HBI HBI HB3 and II HB8 leads12 leadsLead IILead 75+HC6+HCII+HCIISoftwareSoftwareSoftware99.80*NA99.9599.7699.96*NA99.8399.75NA99.7NA	[16][17][18][19][20]Multi lead raw ECGMultilead Fourier-Bessel Series expansion based empirical wavelet transformRaw ECG22 features extracted using variational mode decomposition (VMD)Spectral and Phase coherence indicesGRUCNNStacked Sparse Autoencoder and TreeBaggerKNNSVMI HBI HBI HB3 and II HB650 Samples8 leads12 leadsLead IILead 712 leads5+HC6+HCI I+HCI I6SoftwareSoftwareSoftwareSoftware99.80*NA99.9599.7697.999.96*NA99.8799.8698.7899.8499.8498.8899.7598.85NA99.7NANANANANANANANANANANANANANANANANANANA	[14][17][18][19][20][21]Multi lead raw ECGMultilead Fourier-Bessel series expansion wavelet transformRaw ECG22 features extracted using and mainional mode decomposition (VMD)Spectral and Phase coherence indicesT wave amplitude, and ST deviationGRUCNNStacked Sparse Autoencoder and TreeBaggerKNNSVMKNNI HBI HBI HB3 and I I HB650 SamplesI HB8 leads12 leadsLead IILead 712 leads12 leads5 HHC6 HHCI I HHCI I610 HHCSoftwareSoftwareSoftwareSoftwareSoftware99.80*NA99.9599.7697.998.67*99.96499.8499.8399.7598.8598.81NA99.7NANANANANANANANANANANANANANANANANANANA	[14][17][19][20][21][22]Multi lead raw ECGMultilead Fourier-Bessel series expansion based empirical wavelet transformRaw ECGSpectral extracted using variational mode decomposition (VMD)Spectral of the series coherence of the series coherenceT wave amplitude, wave amplitude, and ST deviationRaw ECGGRUCNNStacked Sparse Autoencoder, and TreeBaggerKNNSVMKNNCNNI HBI HBI HB3 and II HB650 SamplesI HB651 Samples8 leads12 leadsLead IILead 712 leadsLead II5+HC6+HCI I+HCI I610+HC1+HC5oftwareSoftwareSoftwareSoftwareSoftwareSoftware99.80*NA99.9599.7697.998.67*95.4999.8499.8499.8799.9698.7898.71*94.1999.8499.8498.8899.7598.8598.895.22NA99.7NA	[16][17][18][19][20][21][22][23]Multi lead raw ECGMultilead Fourier-Bessel series expansion based empirical wavelet transformRaw ECG22 features extracted using variational mode decomposition (VMD)Spectral observeree and ST deviationT wave amplitude (WMD)Multi-lead amplitude Phase observeree and ST deviationMulti-lead mark ECGGRUCNNStacked Sparse Autoencoder and TreeBaggerKNNSVMKNNCNNCNNI HBI HB3 and I I HB650 SamplesI HB651 Samples651 Samples651 Samples651 Samples8 leads12 leadsLead IILead 712 leadsLead II12 leads5+HC6+HCI I+HCI I610+HC1+HC10+HC95.0°NA99.9599.7697.998.67*95.49NA99.8499.8499.8899.7598.8598.895.2299.7899.84NA99.84NANANANANANANANANANANANANANANANANA99.8499.8498.8899.7598.8598.895.22 <td>[16][17][18][19][20][21][22][23][24]Multi lead raw ECGMultilead Fourier-Bessel ware dempirical wavelet transformRaw ECG mated empirical economic (VMD)Spectral and Phase obsect empirical (VMD)T wave amplitude, Phase obsect empirical of teviationMulti-lead resurced from phase and ST deviationMulti-lead resurced from phase obsect empirical obsect empirical wavelet transformStacked Sparse Autoencoder and TreeBaggerStacked Sparse Autoencoder and TreeBaggerKNNSVMKNNCNNCNNCNNCNNI HBI HBI HB3 and I I HB650 SamplesI HB651 Samples5 sec5 sec8 leads12 leadsLead IILead 712 leadsLead II12 leadsLead II12 leads5 f+HC6+HCII +HCI I610 +HC10 +HC6+HC6+HC99.80*NA99.9599.7697.998.67*95.49NA98.1499.95*NA99.8199.8899.7598.8598.895.2299.7898.22NA99.7NA99.6*NA99.7NANANANANANANANA<td>(14)(14)(14)(24)(24)(22)(23)(24)(25)Multi lead raw ECGSeries expansion wavelet transformRaw ECGSeries expansion variational mode (VMD)Software and Phase obserence (MCD)T wave amplitude, Phase and ST deviationTime domain features extracted from DWT of ECGRaw ECGGRUCNNStacked Sparse and reeBaggerKNNSVMKNNCNNCNNCNNCNNCNN+RNN1 HB1 HB3 and 11 HBSSMSVMKNNCNNCNNStacked Sparse and TreeBagger6501 HB651 Samples5 sec512 Samples8 leads12 leadsLead IILead 712 leadsLead II12 leadsLead II12 leadsLead II5 HC6 + HC11 + HC11610 + HC10 + HC6 + HC1 + HC + Noisy+99.80*NA99.9599.7697.998.67*95.49NA98.1492.499.96*NA99.8799.9698.7898.8194.19NA94.697.799.8499.8498.8899.7598.8598.895.2299.7898.2297.2NANANANANANANANANANANANANANANANANANANA99.8498.81NANANANANANANANANA</td><td>(14)(17)(14)(19)(20)(21)(22)(23)(24)(24)(25)(24)Multi lead raw series expansion based empirical wavelet ransformRaw ECGSpectral evariational mode decomposition (VMD)Spectral and phase of series of series of series and (MNW and ST deviationTwave and and ST deviation of ST deviationMulti-lead raw ECGTime domain restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGSoftwareSoftwa</td></td>	[16][17][18][19][20][21][22][23][24]Multi lead raw ECGMultilead Fourier-Bessel ware dempirical wavelet transformRaw ECG mated empirical economic (VMD)Spectral and Phase obsect empirical (VMD)T wave amplitude, Phase obsect empirical of teviationMulti-lead resurced from phase and ST deviationMulti-lead resurced from phase obsect empirical obsect empirical wavelet transformStacked Sparse Autoencoder and TreeBaggerStacked Sparse Autoencoder and TreeBaggerKNNSVMKNNCNNCNNCNNCNNI HBI HBI HB3 and I I HB650 SamplesI HB651 Samples5 sec5 sec8 leads12 leadsLead IILead 712 leadsLead II12 leadsLead II12 leads5 f+HC6+HCII +HCI I610 +HC10 +HC6+HC6+HC99.80*NA99.9599.7697.998.67*95.49NA98.1499.95*NA99.8199.8899.7598.8598.895.2299.7898.22NA99.7NA99.6*NA99.7NANANANANANANANA <td>(14)(14)(14)(24)(24)(22)(23)(24)(25)Multi lead raw ECGSeries expansion wavelet transformRaw ECGSeries expansion variational mode (VMD)Software and Phase obserence (MCD)T wave amplitude, Phase and ST deviationTime domain features extracted from DWT of ECGRaw ECGGRUCNNStacked Sparse and reeBaggerKNNSVMKNNCNNCNNCNNCNNCNN+RNN1 HB1 HB3 and 11 HBSSMSVMKNNCNNCNNStacked Sparse and TreeBagger6501 HB651 Samples5 sec512 Samples8 leads12 leadsLead IILead 712 leadsLead II12 leadsLead II12 leadsLead II5 HC6 + HC11 + HC11610 + HC10 + HC6 + HC1 + HC + Noisy+99.80*NA99.9599.7697.998.67*95.49NA98.1492.499.96*NA99.8799.9698.7898.8194.19NA94.697.799.8499.8498.8899.7598.8598.895.2299.7898.2297.2NANANANANANANANANANANANANANANANANANANA99.8498.81NANANANANANANANANA</td> <td>(14)(17)(14)(19)(20)(21)(22)(23)(24)(24)(25)(24)Multi lead raw series expansion based empirical wavelet ransformRaw ECGSpectral evariational mode decomposition (VMD)Spectral and phase of series of series of series and (MNW and ST deviationTwave and and ST deviation of ST deviationMulti-lead raw ECGTime domain restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGSoftwareSoftwa</td>	(14)(14)(14)(24)(24)(22)(23)(24)(25)Multi lead raw ECGSeries expansion wavelet transformRaw ECGSeries expansion variational mode (VMD)Software and Phase obserence (MCD)T wave amplitude, Phase and ST deviationTime domain features extracted from DWT of ECGRaw ECGGRUCNNStacked Sparse and reeBaggerKNNSVMKNNCNNCNNCNNCNNCNN+RNN1 HB1 HB3 and 11 HBSSMSVMKNNCNNCNNStacked Sparse and TreeBagger6501 HB651 Samples5 sec512 Samples8 leads12 leadsLead IILead 712 leadsLead II12 leadsLead II12 leadsLead II5 HC6 + HC11 + HC11610 + HC10 + HC6 + HC1 + HC + Noisy+99.80*NA99.9599.7697.998.67*95.49NA98.1492.499.96*NA99.8799.9698.7898.8194.19NA94.697.799.8499.8498.8899.7598.8598.895.2299.7898.2297.2NANANANANANANANANANANANANANANANANANANA99.8498.81NANANANANANANANANA	(14)(17)(14)(19)(20)(21)(22)(23)(24)(24)(25)(24)Multi lead raw series expansion based empirical wavelet ransformRaw ECGSpectral evariational mode decomposition (VMD)Spectral and phase of series of series of series and (MNW and ST deviationTwave and and ST deviation of ST deviationMulti-lead raw ECGTime domain restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGMulti-lead restracted from DWT of ECGRaw ECGMulti-lead restracted from DWT of ECGNaw ECGSoftwareSoftwa

Basic block diagram of our LWE FHE (Jointly with Prof. Srinivasan Krishnaswamy)

Hardware Architecture of LWE FHE Encryption Module

Hardware Architecture of LWE FHE Decryption Module

Lightweight LWE based FHE Decryption Module

Work	Scheme	Platform	Operation	LUT/REG/DSP/BRAM	Utilization	Clock (MHz	, cc	Delay	(Mbps)*	
			Encryption	7622/7058/3/13.5			344	6.88µs	5.814	
		Zedboard	Decryption	6940/7865/3/12.5	1.43 X	50	809	16.18µs	2.472	
Proposed	DIWE DUE		Recryption	938/365/-/-		· · · · · · ·	142	2.84µs	14.084	
Variant 1	KEWE THE		Encryption	7821/7159/3/14			330	1.65µs	24.242	
		Virtex-7	Decryption	7114/8085/3/15	1.47 X	200	876	4.38µs	9.132	
			Recryption	980/396/-/-	1.2.10.2.10.00.1.2.0.0.00.100		144	0.72µs	55.556	
		200 D	Encryption	5489/5281/3/5	0.003		72	1.44µs	177.778	
	I take set da	Zedboard	Decryption	4621/5514/-/7	X	50	48	0.96µs	266.667	
Proposed	Lightweight	000 50455505655	Recryption	375/190/-/2	93.9	100000	11	0.22µs	1163.636	
Variant 2	PHE	PHE	HE Virtex-7	Encryption	5519/5298/3/6	1911-013		70	0.35µs	731.429
1121020-022				Decryption	4762/5510/-/8	≈X	200	45	0.225µs	1137.778
			Recryption	379/192/-/3			10	0.055µs	4654.545	
	BGV RLWE	Virtex-7	En/Decryption			150		14.54µs	237.69	
[04]	Non-pipelined	UltraScale	Recryption	~	~	150	~	0.85µs	4065.88	
[24]	BGV RLWE	Virtex-7	En/Decryption	527493/133813/165/23.5	50 71 V	150		6.84µs	505.26	
	pipelined	UltraScale	Recryption	381068/89849/120/16	52.71 A	150	~	0.85µs	4065.88	
[25]	FV RLWE	Virtex-6	Recryption	72613/63086/250/84	6.33 X	100	~	50ms	804.78	
			Encryption				12M	18.1ms		
[26]	GH FHE	TSMC 90-nm	Decryption	~	~	666	10.7M	16.1ms	\sim	
			Recryption				2000M	3.1s		
			Encryption					1.4µs	2.72	
	Iterative FV	Virtex-7	Decryption	77K/~/952/325.5	3.64 X	200 ~	~	1.24µs	3.08	
[27]			Recryption					0.96µs	3.97	
	Four-Step FV		Encryption		_			1.8µs	2.12	
		Four-Step FV	Four-Step FV	our-Step FV Virtex-7	Decryption	67K/~/599/129	3.15 X	200	~	1.8µs
	1996 CENES AND CO.	(1947) Season 1940	Recryption	Solid of a state of a second state of a	0.000004.002704.015		11	1.4µs	2.73	
[28]	GH-FHE	Virtex-7	En/Decryption	153771/68467/672/~	10.37 X	~	~	11ms	~	
~" and "-"	denote "Data not	specified" and '	Resource not util	ized" respectively: "*" (Degr	ee of Polynomi	al × No	of bits)	/ Speed	where	

"Speed" is the time taken to produce an output after input is loaded in FPGA memory for computations.

Comparison With Lattice FHE Hardware Accelerators

Hardware Accelerator and SoC Integration

Scheme		Avg.	Hardware	e Timings	Speed-up		
(Software used)	Op.	Software Timings	ZedBoard (50MHz)	Virtex-7 (200MHz)	ZedBoard (50MHz)	Virtex-7 (200MHz)	
DI WE	Encrypt	563.62 μs	6.88 µs	1.65 μs	81.92 ×	341.59 ×	
(SageMath)	Decrypt	882.16 µs	16.18 μs	4.38 μs	54.52 ×	204.41 ×	
(Sageiviatii)	Recrypt	149.18 μ s	2.84 μs	0.72 μs	52.53 ×	207.19 ×	
Lightweight	Encrypt	535.00 μs	1.44 μs	0.35 μs	$371.53 \times$	$1528.57 \times$	
LWE	Decrypt	148.40 μs	0.96 μs	0.225 μs	$154.58 \times$	659.56 ×	
(MATLAB)	Recrypt	61.30 µs	0.22 μs	0.055 µs	278.63 ×	$1114.55 \times$	

Biomedical data security

Secure Smart-grid Hierarchical Architecture

Indian Patent Filed

SECURE AI SOC INDIRA©/INDRA ©TOP LEVEL ARCHITECTURE

SECURE AI SOC IMPLEMENTATION PLAN

Approach 1	 Designing our own RV-32 and using ROCC for integrating AI/ML co-processor as shown in top level architecture. Processor in development stage. Development time is more as we have to design, integrate, test and verify.
Approach 2	 Using AJIT/SHAKTI/VEGA Processor and integrate AI/ML Processor using memory map method. Verified indigenous processor cores will be used. Development time is less that approach1 as we only need to integrate and verify.
Approach 3	 Using ARM Cortex-M33 IP for integrating AI/ML co-processor. Integrating AI/ML processor and testing will take time. Development time will be less as all verification flow and Backend flow is provided by ARM

RV-32 APPROACH

Secure AI SoC Block Diagram

RV-32 TOP LEVEL ARCHITECTURE

Block Diagram of the designed RISC-V

AJIT PROCESSOR INTEGRATION WITH COPROCESSOR MODULE AND COMMUNICATION THROUGH PC

The ajit_debug_monitor_mt tool is used to execute the cortos2 c-code to write to and read from the interface registers.

AJIT PROCESSOR FPGA IMPLEMENTATION AND COMMUNICATION THROUGH PC

- Configured constraints for zynq zc706 board
- Minicom setup for output monitoring

Znyq-zc706 FPGA board set up for AJIT IP implementation

ajit_debug_monitor window - AJIT IP

Minicom output for accelerator program in AJIT IP

ARM CORTEX-M33 APPROACH

Replacing the example core Custom Datapath Extension (CDE) module and floating-point FPCDE module with our own designs and integrating them with the processor.

Need to configure the implementation using support of the Arm Custom Instructions (ACIs).

The architecture extension defines instruction classes that depend on the number of source or destination registers. For each class, an accumulation variant exists.

- CX1, CX2, CX3 : These three classes operate on the generalpurpose register file, including the condition code flags APSR_nzcv.
- VCX1, VCX2, VCX3 : These three classes operate on the floatingpoint register file only

Block Diagram of ARM Cortex-M33

IP HIERARCHY & TOOLS REQUIREMENT

ARM-CORTEX M33 VERIFICATION PROGRESS

TEALMCU Block Diagram

ARM Testbench architecture

TEST PLAN

TEST NO.	TEST CATEGORIE NAME	TESTCASE STATUS	COMMENT
1	hello_world	Pass	The processor reads the CPUID register and writes to the GPIO registers to print a simple message. This must be the first test run. You can run this test without compiling it, as both the source code and binary executable versions are supplied.
2	config_check	Pass	This test verifies that the processor configuration matches the expected configuration values set in the EXECTB_Config.h file. This must be the second test run.
3	coprocessor	Test Skip	There is not connected any coprocessor, This test demonstrates the operation of the example coprocessor. Note: This test is run only if CPIF is 1 and CDEMAPPEDONCP0 is 0. Otherwise, it is skipped.
4	example_cde	Pass	This test is an example to help understand how the CDE module works. It illustrates the internal functionality of the CDE module example delivered in the execution testbench.
5	example_fpcde	Pass	This test is an example to help understand how the FPCDE module works. It illustrates the internal functionality of the FPCDE module example delivered in the execution testbench. You cannot use this example test as it is for your customized module, however you can create your own test based on this example test.
6	check_cde_if	Pass	This test is an example to help understand how the FPCDE module works. It illustrates the internal functionality of the FPCDE module example delivered in the execution testbench.
7	check_fpcde_if	Pass	This test is an example that puts constraints on the FPCDE module interface to stress it. You cannot use this example test as it is for your customized module, however you can create your own test based on this example Test.
8	debug	Pass	The test checks the pins LOCKUP, EDBGRQ, HALTED, DBGRESTART, and DBGRESTARTED.
9	dhrystone	Pass	This test runs the Dhrystone benchmarking program. The default number of iterations is five. You can change the number of iterations by editing the ITERATIONS value in the Makefile. You can run this test without compiling it.

TEST PLAN (CONTD.)

TEST NO.	TEST CATEGORIE NAME	TESTCASE STATUS	COMMENT
10	eppb	Pass	This test demonstrates access to the small memory on the EPPB bus.
11	sleep	Pass	This test exercises the sleep modes of the processor, and the SLEEPING and SLEEPDEEP signals. The test uses an interrupt to wake the processor, and if the processor includes debug,
12	saxpy_scalar	Pass	This test is used to measure maximum power with the floating-point unit. You can run this test without compiling it, as both the source code and binary executable versions are supplied. To use the pre-compiled binary executable, copy it from the pre_compiled directory to the tests directory before use. The pre-compiled code
13	wfi	Pass	This test measures minimum power when the processor is awaiting an interrupt. You can run this test without compiling it, as both the source code and binary executable versions are supplied.
14	Maxpwr_cpu	Pass	This tests the power consumption of the processor at sustained maximum power running integer operations. You directory before use. The pre-compiled code measures power in the default configuration with the MPU, SAU and DWT enabled. If any other configuration of the MPU, SAU, DWT, ETM and MTB is present in your design,
15	etm_trace	pending	
16	exclusive	pending	
17	idau	pending	
18	interrupt	pending	
19	trace	pending	
20	mtb_trace	pending	
21	non_secure	pending	
22	reset	pending	
23	romtable	pending	

ARM CORTEX-M33 IMPLEMENTATION PROGRESS

Currently we are working on ARM provided flow to test the IP implementation.

Established the required hierarchy by adding TSMC 40nm tech. node data (IMEC Belgium is supporting it)

Used CapTable in absence of foundry specific qrcTech file.

Fixing bugs in flow (e.g. commands/files Paths/dB saves)

Till now following stages completed

• Setup, synthesis, dft_insert, PnR, LEC

Currently working on Physical verification and will start timing signoff after receiving foundry specific qrcTech file.

Screenshots included in next slide

File Edit Tools Syntax Buffers Window Help

🕒 🛃 🕞 🕞 🧇 🌾 🕌 📋 🎦 🖓 🚸 🖓 🏙 🛤

2		Verification Report	
4	Ca	tegory	Count
5 6 7 8 9 10	1.	Non-standard modeling options used: Tri-stated output: checked Revised X signals set to E: yes Floating signals tied to Z: yes Command "add clock" for clock-gating: not used	0
12 13 14 15 16 17 18 19 20 21 22	2.	Incomplete verification: All primary outputs are mapped: yes Not-mapped DFF/DLAT is detected: no All mapped points are added as compare points: yes All compared points are compared: yes User added black box: no Black box mapped with different module name: no Empty module is not black boxed: no Command "add ignore outputs" used: yes * Always false constraints detected: no	1
23 24 25 26 27	з.	User modification to design: Change gate type: no Change wire: no Primary input added by user: no	0
28 29 30	4.	Conformal Constraint Designer clock domain crossing checks recommended: Multiple clocks in the design: yes *	1
31 32 33 34 35 36 37 38	5.	Design ambiguity: Duplicate module definition: Black box due to undefined cells: Golden design has abnormal ratio of unreachable gates: Ratio of golden unreachable gates: Revised design has abnormal ratio of unreachable gates: Ratio of revised unreachable gates: 1%	0
39 40 41 42 43	6.	Compare Results:9081Number of EQ compare points:9081Number of NON-EQ compare points:0Number of Aborted compare points:0Number of Uncompared compare points :0	PASS

Power domain View

Routing Complete view

X-dimension= 1124200 um and Y-dimension= 1124200 um
 Total place area is 255249.238 sq.um with 75.95% pre-place utilization/density

LEC mapped2synth report

AI/ML CO-PROCESSOR IMPLEMENTATION PLAN

- Identify commonly used operations for AI/ML computations i.e. convolution, vector dot product, matrix addition. (All 32-bit FP operations)
- Convolution operation :
 - Designing for 640x480 matrix which contains 32-bit pixel information (RGB) having filter/Kernel Matrix of 1x1, 3x3, 5x5, 7x7.
 - This is done in 8 layers with different filter matrix containing 8 special feature for at least 3 stages.
 - Buffer Function can be any commonly used in CNN
 - ReLU (Exponential Linear Unit) activation function
 - Sigmoid
 - Tanh
 - ELU (Exponential Linear Unit) activation function

Convolution Engine Approach

CONVOLUTION ENGINE DESIGN

5X5 Matrix

Convolution Operation

Convolution Operation Block Diagram
CONVOLUTION RESULT WITH(R,G,B)

		<mark>3,072,024.</mark> 8	<mark>33 ns -</mark>													
Name	Value			3,072,200.00	0 ns	3,072,400	.000 ns	3, 072	,600.000 ns	l ³	,072,800.000	ns	3,073,000.00	0 ns	3,073,200.0	900 ns
V 🛋 TOP																
🛿 clk_i	1							սոսիսոս		սոստի						INNAA
🖟 reset_i	0															
18 wea	0															
> 😻 addra_i[31:0]	0004b000		0004b000													
> 😽 data_in_R[31:0]	XXXXXXXXX															
> 😽 data_in_G[31:0]	XXXXXXXXX								XXXXXXXX							
> 😽 data_in_B[31:0]	XXXXXXXXX								XXXXXXXXX							
> 😽 out_R[31:0]	0.0	0.0	40.776	39.725	36.960	35.443	34.078	34.403	34.313	34.450	33.607.	. 32.231	. 30.843	29.788	29.454	30
> 😽 out_G[31:0]	0.0	0.0	41.694	40.686	37.866	36.258	34.768	34.952	34.682	34.776.	34.325.	. 33.450	. 32.403	31.431	30.941	31
> 😼 out_B[31:0]	0.0	0.0	42.125	40.937	38.003	36.305	34.745	34.874	34.556	34.501.	33.615.	. 32.419	. 31.160	30.090	29.505	30
> 😼 out_RGB[31:0]	6.31088724176809e-30	<u>.</u> 31088	124.59	121.34	112.83	108.00	103.59	104.23	103.55	103.72	101.54.	. 98.101	. 94.407	91.309	89.901	92
> 😼 add_out[31:0]	0f00000	0f000000	42f9312e	42f2b2b0	42e1a9a7	42d80402	42cf2f2d	42d07675	42cf1b19	42cf75	73 X 42cb191	6 42 c43432	2 42bcd0cf	42b69e9d	42b3cdcc	42b
> 😽 add_out1[31:0]	0f000000	0f000000	42a4f0ef	42a0d2d1	4295a7a6	428f6766	4289b1b0	428ab6b6	X 4289fdfd	428a7 4	73 X 4287ddd	c 42835d5c	427cfcfa	4274e0df	42719594	427

40.776471 39.725490 36.960785 35.443138 34.078432 34.403922 34.313726 42.125490 40.937255 38.003922 36.305883 34.745098 34.874510 34.556863 41.694118 40.686275 37.866667 36.258824 34.768628 34.952942 34.682353 27.8666667 27.403922 28.576471 30.007843 28.792157 24.592157 20.670588 28.952942 28.588236 29.921569 31.474510 30.435294 26.388236 22.678432 28.549020 28.576471 29.870589 31.023530 29.815686 25.949020 22.600001 12.827451 13.043138 12.372550 12.270589 13.290197 16.070589 19.101961 14.690197 14.949020 14.505883 14.713726 15.984314 18.996079 22.215687 16.325491 16.674510 16.058824 15.984314 17.019608 19.960785 23.133334 14.917647 16.458824 17.552942 17.086275 18.054902 21.156863 22.560785 17.537255 19.113726 20.247059 19.788236 20.529412 23.376471 24.545099 18.309804 19.552942 20.376471 19.678432 20.478432 23.454902 24.745099 29.854902 30.247059 30.592157 30.894118 31.266667 31.396079 32.643138 31.733333 32.109804 32.419608 32.658824 32.941177 32.882353 33.929412 31.588236 31.760785 32.031373 32.313726 32.854902 33.011765 33.933334 33.411765 34.019608 34.588236 34.207844 32.729412 31.623530 31.423530 34.172549 34.811765 35.368628 35.000000 33.505883 32.364706 32.109804 33.247059 33.862746 34.411765 33.949020 32.384314 31.188236 30.933334 36.294118 36.752941 36.066667 36.133334 35.819608 33.062746 27.447059 37.058824 37.509804 36.815687 36.850981 36.592157 33.984314 28.513726 37.6666667 38.149020 37.474510 37.415687 37.188236 34.764706 29.701961 13.545098 13.894118 15.066667 15.643138 15.678432 15.411765 15.372550 15.627451 15.964706 17.152942 17.713726 17.733334 17.392157 17.337255 18.152942 18.094118 18.905883 19.349020 19.513726 19.572549 19.823530 25.803922 25.980393 26.600001 29.541177 33.768628 35.619608 33.227451 24.203922 24.290197 24.788236 27.643138 31.807844 33.572549 31.121569 23.819608 24.090196 24.847059 28.172550 32.827452 35.039216 32.913726 32.443138 30.980393 29.156863 28.478432 27.368628 25.913726 23.968628 34.047059 32.678432 30.752942 29.917648 28.650981 34.443138 32.847059 30.807844 29.831373 28.454902 26.788236 24.729412

R-channel output

G-channel output

B-channel output

Convolution Operation Implementation

The human brain can correctly identify images seen for as little as 13 milliseconds, Whereas training a CNN with 5-layer network using a data set of 1000 observations takes almost 5 minutes for one iteration.

Properties	Computer	Human Brain
Basic Unit	~10 Billion Transistors	~100 Bilion Neurons ~100 Trillion Synapse
Processing Mode	Serial & Parallel	Massively Parallel
Power Consumption	~100 Watts	~20 Watts
Input Output for each unit	1-3	~1000
Signalling Mode	Digital	Analog

Computer Vs Brain

AUTONOMOUS DRONE

CPU/GPU Controller Power: 50mW Pre-trained to fly between known gates

COCKATIEL PARROT

Brain Power: 50mW Navigates and learns unknown environments at 35km/h

Can learn to speak English Can learn to manipulate cups for words drinking

Source: A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun and D. Scaramuzza, "Deep Drone Racing: From Simulation to Reality With Domain Randomization," in *IEEE Transactions on Robotics*, vol. 36, no. 1, pp. 1-14, Feb. 2020, doi: 10.1109/TRO.2019.2942989.

Computing system timeline

Current Research Interest

Processor	Developer	Configuration	Power Consumption	Advantages	Disadvantages
Loihi 2	Intel 2021	130,000 artificial neurons,130 million synapses, 4,096 cores.	23.6 pJ per synaptic operation	Digital ASIC at 14 nm. FinFET,	Large Area occupied due to Digital Implementation
TrueNorth	IBM 2004	4096 cores with 256 programmable simulated neurons, 268 million synapses each	<mark>26 pJ</mark> per Synaptic Operation.	Digital ASIC at 28 nm.	SNN emulation without on-chip learning
SpiNNaker	University of Manchester 2018	57,600 ARM9 processors, 1,036,800 cores and over 7 TB of RAM.	100 W and an air- conditioned environ ment	More flexible. 130 nm process technology	Energy Inefficient as it consumes 100 W of power.
DYNAP-SE	INI Zurich 2018	1024 neurons, 64K synapses (12- bit CAM)	17 pJ per synaptic operation	Mixed signal 180 nm CMOS. Hybrid analog/digital circuits for synapse and neuron.	Area Overhead

Neuromorphic Processors

Von Neumann Vs Neuromorphic Computing

x for RRAM1 is set to 5 nm

 $R_{RRAM1} = 50 M\Omega$ (High Resistance State)

 R_{RRAM2} = 1.3 K Ω (Low Resistance State)

Energy/spike = $1.5 \times 10^{-15} \text{ J}$

Self resetting I&F neuron

Publication	Year	Platform	Neuron Model	Energy per spike(J)	Spiking Frequency	External RESET
[5]	2018	РСМО	IF	4.8 x 10 ⁻¹²	0.44 MHz – 0.8 MHz	Yes
[6]	2020	SGFBPF	LIF	0.25 x 10 ⁻¹²	150 kHz	No
[7]	2020	FBFET	IF	2.9 x 10 ⁻¹⁵	20 kHz	No
[8]	2020	PDSOI MOSFET	IF	3.2 x 10 ⁻¹⁵	150 kHz	Yes
[9]	2021	DG-JLFET	LIF	1.14 x 10 ⁻¹²	200 MHz	No
[10]	2021	CMOS	IF	0.135 x 10 ⁻¹²	0.2 kHz	No
Proposed Work	2023	RRAM	IF	1.5 x 10 ⁻¹⁵	277 kHz – 3 MHz	No

Proposed Synaptic Architecture

Publication	[11]	[12]	[13]	[14]	[15]	Proposed work
Bit/cell	3-Bit	3-Bit	3-Bit	2-Bit	2-Bit	4-Bit
Programming Mode	IC_{set}	IC_{set}	V_{reset}	IC _{set}	IC _{set}	V_{reset}
Array Size	8 x 8	2k bits	-	16 x 16	Single Cell	10 x 10 (25.6kbits)
Energy/cell	0.85 pJ	30 pJ	240 pJ	-	65 pJ	0.1 pJ
Latency	3.39 µs	5 µs	3.1 µs	15 µs	2.5 ms	1.07 µs
Design Level	Device	Device	Device	Circuit	Device	Circuit

Comparison with contemporary architectures

To evaluate the performance of the RRAM-based neuron and the synapse, we trained them in Python, transferred the weights to the synaptic array, and verified the SNN architecture for inference.

We perform training for the MNIST (Modified National Standards and Technology) data-set (with 60,000 training images and 10,000 test images of handwritten digits).

Attributes	This work	[16]	[17]	[18]	[19]	[20]	[21]
Neuron	RRAM Based	Digital	Digital	Analog	Analog	Analog	Analog
Synapse	4T-IR	Analog	Analog	IT-IRRAM	9PCM	I Memristor	IRRAM
Reprogrammable?	Yes	Yes	Yes	No	No	No	No
Bit/Cell	4-Bit/cell	-	-	2-Bit/cell	2-Bit/cell	2-Bit/cell	2-Bit/cell
Dataset	Full MNIST	Full MNIST					
Accuracy	89.7 %	94.8 %	93.5 %	75 %	70 %	75.65 %	90.76 %
Input-output neurons	784-10	784-6400	784-300	784-50	784-50	784-30	784-15000
Energy Per Synaptic operation	7.78 pJ	50 pJ	93 pJ	15.5 pJ	27 pJ	23 pJ	-

Benchmarking with state-of-the-art works

ROADMAP

Design (Collaboration Invited)

- Post Quantum Cryptography Coprocessor Tapeout and Validation by March 2025
- Secure AI SoC Tapeout and Validation by March 2025
- Wearable Healthcare Products by December 2025
- Applications based on AI SoC and PQC Core by December 2025
- Neuromorphic Computing Processor with the Complete Ecosystem by December 2026

Voltus & Redhawk-SC Conformal & formality PrimeTime

Tools Used

- 1. An analog/RF circuit simulator
- **1. VEDA:** An indigenous TCAD Engine
- 2. Kapees: Floorplanning, Placement and Routing Tools of 2D and 3D VLSI digital circuits
- 3. ML-based VLSI Power Grid Analyzer
- 4. Analog layout design automation

An Analog/RF Circuit Simulator

<u>Specifications</u>:

- ✓ Similar to HSPICE and SPECTRE.
- ✓ Provides all the analyses such as OP, DC, AC, TRAN, NOISE, TF etc.
- \checkmark Supports parallelization of circuit analysis at micro as well as macro level
- Provides single processor multithreaded environment for analysis
- ✓ Supports heterogenous computing environment for circuit analysis
- ✓ Supports all direct and indirect matrix solution methods
- ✓ Simulates circuits of size up to 10 Million nodes
- ✓ Extended up to 100 Million 01 Billion nodes

- VEDA (Very Efficient Device Analyzer): A TCAD Simulator (In collaboration with VSD and SCL Chandigarh) : Similar to Sentauras and Silvaco TCAD engine
- Specifications:
 - ✓ FDM, FEM, FVM and their variants
 - ✓ 2D and 3DTCAD analysis
 - ✓ Parallelization of device analysis at micro as well as macro level
 - Single processor multithreaded environment for analysis
 - Heterogenous computing environment for device analysis
 - All direct and indirect matrix solution methods
 - ✓ All necessary numerical techniques for convergence
 - Device design and fabrication using SCL foundry
 - Machine Learning based techniques for faster semiconductor device modelling
 - State-of-the-art techniques for system matrix solution such as random walk, river formation dynamics
 - \checkmark High power and novel design analysis and modelling

• <u>Status:</u>

- 1. Work is in progress. Developed an essential framework for TCAD simulator integrated with Drift-Diffusion and Quantum Ballistic Models
- 2. Improved FEM (FEM-DG, SUPG etc.) techniques have been incorporated
- 3. The results of VEDA are **10 times** more accurate as compared to Sentaurus, a commercial simulator with a little increase (20% only) in speed. Working on to improve computational speed on a single processor.
- 4. Integrating a machine learning based interface to VEDA not only to speed up device analysis but also to aid search of new devices irrespective of technology. New schemes for parallel TCAD simulation are being investigated.

Results of our indigenous TCAD Simulator VEDA

Potential Profile for a MOS Capacitor

-88-7

-1.60-6

-2.40-6

-3.29-6 -3.560e-06 Potential Profile inside the MOSFET at zero drain voltage

Results of our indigenous device simulator VEDA

It supports drift-diffusion and Quantum-Ballistic models.

Potential Profile of MOSFET Capacitor

Heterostructure of GaAs/AlGaAs

Results of our indigenous device simulator VEDA

Results of our indigenous device simulator VEDA

Algorithm 3 Kapees3: Multilevel Algorithm **Require:** Hypergraph H_0 : standard cell circuit and n_{max} Number of cells at the coarsest level **Ensure:** (x^*, y^*) optimal cell positions

- 1: First choice clustering till the number of cells is $> n_{max}$
- 2: Let the levels of FCC be LEV to 0

 $\triangleright LEV$ is coarsest

- 3: if Pads connected to movable standard cells then
- Initialize cell positions by solving QP 4:

5: else

- Initialize cell positions by randomization 6: 7: end if
- 8: Initialze the value of μ_0 by solving Eq (11)
- 9: for level = LEV to level = 0 do
- Estimate grid-cells, $NBx = NBy = \sqrt{n_{level}}$ 10:
- Solve Equation (6.4) and (6.5) for each grid-cell 11:
- Initialze $\mu_{level} = \mu_{level-1}/2, m = 0, \mu_m = \mu_l$ 12:
- while $overflow_ratio > 0.01$ do 13:
- Solve min $H(x, y) + \mu_m \sum (B_q A_q)^2$ 14:
- m = m + 115:
- $\mu_m = 2 * \mu_{m-1}$ 16:
- Estimate overflow_ratio 17:
- if $overflow_ratio < 0.1$ and level = 0 then 18:
- Legalize and save best result 19:
- end if 20:
- end while 21:

22: end for

Progression of placement solution, starting from initial placement (marked by number 1), till the final global placement (marked by number 12).

Circuits	mPL6	NTUPlace3	Dragon	Feng Shui	Capo10.5	Kapees3
	HPWL	HPWL	HPWL	HPWL	HPWL	HPWL
	$\times 10^{6}$					
PEKO01	10.1271	15.076	20.248	16.4146	13.5326	12.0781
PEKO02	15.6529	24.0175	31.2822	27.163	21.0727	16.3846
PEKO03	22.4259	28.3669	36.1874	31.7795	33.7368	19.7872
PEKO04	23.6169	32.9212	35.8333	36.2248	41.4622	23.0348
PEKO05	23.8461	35.3598	37.2307	39.8124	45.1628	24.8374
PEKO06	25.7724	38.2358	48.1904	44.5226	38.6956	27.1373
PEKO07	35.7566	53.4979	82.4951	59.9856	67.2508	37.8252
PEKO08	47.1814	57.5143	82.0223	64.5356	80.6975	40.9355
PEKO09	55.8006	62.6516	91.3205	76.6115	92.7892	60.0286
PEKO10	66.178	95.5689	110.9	105.448	132.421	67.4856
PEKO11	74.2934	85.7527	114.442	102.637	120.501	62.2829
PEKO12	82.5655	97.7335	118.453	113.135	123.109	66.0617
PEKO13	86.865	118.926	172.172	134.853	142.334	77.6594
PEKO14	156.285	160.181	NA	213.205	NA	139.908
PEKO15	185.418	202.77	NA	OOM	NA	186.745
PEKO16	207.394	222.271	NA	OOM	NA	209.179
PEKO17	217.015	238.421	NA	OOM	NA	220.95
PEKO18	227.443	234.794	NA	OOM	NA	234.397
Average	1.027	1.302	1.478	1.5757	1.695	1.00

Circuits	Capo10.5	FLOP	FastPlace	ComPLx	POLAR	mPL6	MP3U	Kapees3
AD1	84.77	76.83	82.39	79.05	92.17	77.84	79.05	73.94
AD2	92.61	84.14	88.53	99.11	149.43	88.40	84.26	80.00
AD3	202.37	175.99	187.98	175.78	197.48	180.64	168.11	175.98
AD4	202.38	161.68	187.50	156.75	175.19	162.02	156.33	164.02
AD5	565.88	357.83	338.77	338.67	380.45	376.30	306.12	283.64
BB1	112.58	94.92	104.91	96.18	99.12	99.36	99.78	97.06
BB2	149.54	153.02	145.89	147.19	157.72	144.37	149.96	148.39
BB3	583.37	346.24	400.40	344.63	420.28	319.63	392.72	357.28
BB4	915.37	777.84	775.43	772.53	814.07	804.00	809.41	795.05
NB1	110.54	67.97	73.91	65.26	70.68	66.93	61.75	66.88
NB2	303.25	187.40	197.15	187.87	197.65	179.18	170.80	181.42
NB3	1282.19	345.99	325.72	269.47	601.17	415.86	223.38	294.34
NB4	300.69	256.54	270.70	256.97	277.60	277.69	253.39	200.99
NB5	570.32	510.83	500.09	453.05	450.69	515.49	450.07	377.92
NB6	609.16	493.64	512.19	452.83	475.78	482.44	485.73	441.47
NB7	1481.45	1078.18	1016.10	1010.00	1107.59	1038.66	1125.84	1089.58
Avg WL	1.5662	1.0784	1.1155	1.0458	1.2367	1.0996	1.0296	1.00

HPWL comparison for PEKO and MMS Circuits

Circuits	mPL6	NTUPlace3	Dragon	Feng Shui	Capo10.5	Kapees3	Ī	Circuits	mPL6	NTUPlace3	Dragon	Feng Shui	Capo10.5	Kapees3
	Runtime	Runtime	Runtime	Runtime	Runtime	Runtime			Runtime	Runtime	Runtime	Runtime	Runtime	Runtime
	min sec	min sec	min sec	min sec	min sec	min sec			min sec	min sec	min sec	min sec	min sec	min sec
PEKO01	11m46s	8m33s	51m54s	11m2s	13m30s	2m33s		PEKO01	11m46s	8m33s	51m54s	11m2s	13m30s	2m33s
PEKO02	17m9s	10m19s	$79 \mathrm{m7s}$	19m34s	25m53s	4m30s	Ī	PEKO02	17m9s	10m19s	$79 \mathrm{m7s}$	19m34s	25m53s	4m30s
PEKO03	21m31s	17m48s	79m9s	21m46s	73m58s	4m55s		PEKO03	21m31s	17m48s	79 m 9 s	21m46s	73m58s	4m55s
PEKO04	24m7s	18m52s	82m45s	25m50s	89m43s	6m25s	Ī	PEKO04	24m7s	18m52s	82m45s	25m50s	89m43s	6m25s
PEKO05	25m29s	18m32s	122m17s	28m27s	91m11s	6m57s	Ī	PEKO05	25m29s	18m32s	122m17s	28m27s	91m11s	6m57s
PEKO06	28m46s	18m16s	104m30s	32m32s	110m2s	8m6s		PEKO06	28m46s	18m16s	104m30s	32m32s	110m2s	8m6s
PEKO07	46m5s	32m27s	209m15s	45m59s	219m3s	12m11s		PEKO07	46m5s	32m27s	209m15s	45m59s	219m3s	12m11s
PEKO08	56m58s	36m38s	299m1s	54m4s	236m8s	15m20s	Ī	PEKO08	56m58s	36m38s	299m1s	54m4s	236m8s	15m20s
PEKO09	57m53s	24m29s	252m56s	57 m 57 s	254m16s	20m12s	Ī	PEKO09	57m53s	24m29s	252m56s	57m57s	254m16s	20m12s
PEKO10	74m25s	47m32s	199m36s	78m34s	362m17s	22m58s	Ī	PEKO10	74m25s	47m32s	199m36s	78m34s	362m17s	22m58s
PEKO11	69m28s	38m44s	161m15s	77m25s	362m10s	21m2s	Ī	PEKO11	69m28s	38m44s	161m15s	77m25s	362m10s	21m2s
PEKO12	82m11s	56m59s	219m46s	83m33s	398m43s	22m24s	Ī	PEKO12	82m11s	56m59s	219m46s	83m33s	398m43s	22m24s
PEKO13	89m31s	72m1s	346m47s	97m36s	530m44s	26m30s	Ī	PEKO13	89m31s	72m1s	346m47s	97m36s	530m44s	26m30s
PEKO14	179m0s	83m45s	>12hrs	178m30s	>12hrs	69m16s	Ī	PEKO14	179m0s	83m45s	>12hrs	178m30s	>12hrs	69m16s
PEKO15	213m16s	110m30s	>12hrs	NA	>12hrs	74m12s	Ī	PEKO15	213m16s	110m30s	>12hrs	NA	>12hrs	74m12s
PEKO16	230 m 3 s	92m46s	>12hrs	NA	>12hrs	91m46s	Ī	PEKO16	230m3s	92m46s	>12hrs	NA	>12hrs	91m46s
PEKO17	240m52s	95m11s	>12hrs	NA	>12hrs	88m28s		PEKO17	240m52s	95m11s	>12hrs	NA	>12hrs	88m28s
PEKO18	256m3s	106m50s	>12hrs	NA	>12hrs	97m29s	Ì	PEKO18	256m3s	106m50s	>12hrs	NA	>12hrs	97m29s
Average	3.38	2.134	14.26	3.746	14.10	1.00		Average	3.38	2.134	14.26	3.746	14.10	1.00

Runtime comparison for PEKO Suite1 and PEKO Suite2 benchmarks

• <u>3D-Kapees:</u>

Flow diagram of our 3D placement tool

Circuits				Comp	oarison 1				
		F3D [36]]	Proposed Placement Tool (TSV Oblivious					
	HPWL	#TSVs	runtime	HPWL	#TSVs	runtime			
	$\times 10^{7}$	$\times 10^{3}$	min	$\times 10^{7}$	$\times 10^{3}$	min			
IBM01	0.37	0.87	7.19	0.28	9.8	18.7			
IBM03	0.84	2.92	12.31	0.70	18.1	55.5			
IBM04	1.11	3.36	24.21	0.98	22.1	39.45			
IBM06	1.45	3.40	27.07	1.25	28.4	60.2			
IBM07	2.27	4.46	36.00	1.92	38.0	68.1			
IBM08	2.36	4.43	30.81	2.09	40.9	120.2			
IBM09	2.08	3.37	30.14	2.03	42.9	116			
Avg	1.164	0.1135	0.38	1.0	1.0	1.0			

3D Placement results comparison with Cong and Luo [36] on IBM version 1 benchmarks

Circuits				Compar	ison 2				
		F3D [36]		Proposed Placement Tool(TSV away					
	HPWL	#TSVs	runtime	HPWL	#TSVs	runtime			
	$\times 10^{7}$	$\times 10^{3}$	min	$\times 10^{7}$	$\times 10^{3}$	min			
IBM01	0.37	0.87	7.19	0.45	0.463	3.5			
IBM03	0.84	2.92	12.31	1.09	2.108	7.5			
IBM04	1.11	3.36	24.21	1.53	2.263	7.7			
IBM06	1.45	3.40	27.07	2.28	2.653	11.54			
IBM07	2.27	4.46	36.00	4.18	3.385	18.8			
IBM08	2.36	4.43	30.81	4.47	2.850	23.95			
IBM09	2.08	3.37	30.14	4.36	1.912	21.52			
Avg	0.64	1.52	1.96	1.0	1.0	1.0			

Power Distribution Network (PDN)

- Power grids are metallic grids → Distribute power to different functional blocks of a chip.
- Major concerns
 - Reliable on-chip power delivery
 - Maintenance of signal integrity

Issues in PDN design

- IR drop
- $L\frac{di}{dt}$ noise
- Electromigration

A real industrial chip with cell instances = 0.5M and P/G resistors = 0.6M, Courtesy IBM

 \rightarrow with consideration of minimum **Area**.

Danahmarka			SLP [1]				RFD [2]			MRFD				
Benchmarks	$\vartheta'(\%)^1$	$A(\%)^{1}$	Constr. ²	Time (sec)	$\vartheta'(\%)^1$	$A(\%)^{1}$	Constr. ²	Time (sec)	$\vartheta'(\%)^1$	$A(\%)^{1}$	Constr. ²	Time (sec)		
ibmpg2	0.91	03.90	72	98 (+ 0.23)	6.60	02.02	86	92 (+ 0.02)	1.06	04.00	89	39 (+ 0.02)		
ibmpg4	1.84	06.00	162	913 (+ 0.50)	4.38	01.30	151	1146 (+ 0.11)	1.08	06.70	176	553 (+ 0.11)		
ibmpg5	1.80	08.90	139	1221 (+ 0.62)	4.05	01.56	179	1427 (+ 0.30)	0.89	12.40	149	626 (+ 0.30)		
ibmpg6	2.05	07.12	136	1734 (+ 0.67)	5.21	02.12	121	2201 (+ 0.31)	1.91	08.20	132	989 (+ 0.32)		
industry1	1.24	03.95	200	258 (+ 0.45)	3.03	00.50	230	397 (+ 0.03)	0.06	06.56	312	189 (+ 0.03)		
industry2	1.80	07.00	1123	1233 (+ 0.60)	4.03	02.02	1521	1310 (+ 0.32)	0.23	13.96	1035	571 (+ 0.32)		
industry3	2.61	07.89	1406	3058 (+ 4.30)	6.13	03.34	2010	3732 (+ 1.23)	1.52	10.11	2256	1181 (+ 1.23)		
industry4	-	-	-	-	9.25	04.56	2313	7310 (+ 5.23)	1.59	18.23	2751	1634 (+ 5.23)		
industry5	-	-	-	-	12.40	06.23	3942	8897 (+ 12.34)	1.78	22.21	5127	2418 (+ 12.34)		
industry6	-	-	-	-	-	-	-	-	1.98	28.63	5748	4394 (+ 23.41)		

¹ ϑ' denotes percentage of affected nodes (above threshold) after optimization.

'A' denotes percentage of reduction in wire area after optimization.

² 'Constr.' denotes number of constraint violations during optimization.
'Time' denotes computational time (algorithm time + process time) required for entire optimization process.

S. D. Tan, C. Shi, and J. Lee, "Reliability-constrained area optimization of VLSI power/ground networks via sequence of linear programmings," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 12, pp. 1678-1684, 2005.
S. Dash, D. Joshi, and G. Trivedi, "CMOS Analog Circuit Optimization via River Formation Dynamics," in *IEEE 26th International Conference Radioelektronika*, Kosice, Slovak Republic, Apr 2016.

ML-based Electromigration-aware aging prediction flow

	Time (sec)		Speedup		
PG circuits	Conventional	PowerPlanningDL	Time _{Conventional} Time _{Power} PlanningDL		
ibmpg1	6.85	3.56	1.92×		
ibmpg2	23.46	11.88	1.97×		
ibmpg3	29.50	8.07	3.59×		
ibmpg4	52.4	11.83	4.42×		
ibmpg5	74.80	12.74	5.87×		
ibmpg6	97.5	17.41	5.60×		
ibmpgnew1	102.58	21.50	4.77×		
i bmpgnew 2	48.60	10.86	4.47×		

COMPARATIVE STUDY OF CONVERGENCE TIME FOR CONVENTIONAL POWER PLANNING APPROACH AND PROPOSED ML FRAMEWORK

	Worst-case IR drop (mV)						
PG circuits	Conventional	PowerPlanningDL					
ibmpg1	69.8	68.2					
ibmpg2	36.3	36.1					
ibmpg3	18.1	18.0					
ibmpg4	4.0	4.1					
ibmpg5	4.3	4.2					
ibmpg6	13.1	13.0					

COMPARATIVE STUDY OF WORST-CASE IR DROP USING CONVENTIONAL POWER PLANNING APPROACH AND PROPOSED ML FRAMEWORK

	CPU Runtime (t) (Hours)					Speedup			
Mothods	TCAD2016 [14]	ICCAD2017 [16]	TCAD2018 [17]	IRPS2019 [18]	Proposed	t_H	t_{Ch}	t_C	t_N
Wiethous	(t_H)	(t_{Ch})	(t_C)	(t_N)	(t_{ML})	$\overline{t_{ML}}$	$\overline{t_{ML}}$	$\overline{t_{ML}}$	$\overline{t_{ML}}$
PG Circuits									
PG1	0.02	0.02	0.001	0.000166	0.0001	$200 \times$	200×	$10\times$	1.66×
ibmpg1	0.05	0.03	0.003	0.01000	0.0003	166.66×	$100\times$	$10 \times$	33.33×
ibmpg2	0.11	0.31	0.04	0.02000	0.002	$55 \times$	155×	$20\times$	$10 \times$
ibmpg3	5.83	4.27	0.41	0.07000	0.009	647.77×	610×	$45.55 \times$	7.77×
ibmpg4	14.71	6.81	2.31	0.11000	0.007	2101.42×	972.85×	330×	15.71×
ibmpg5	0.69	0.25	0.06	0.03000	0.006	115×	41.66×	$10\times$	$5\times$
ibmpg6	1.75	2.07	0.79	0.23330	0.009	194.44×	230×	87.77×	$25.92 \times$
ibmpgnew1	16.78	0.42	1.24	0.08000	0.013	1290.76×	32.06×	95.38×	6.15×
i bmpgnew 2	15.32	2.60	0.43	0.06000	0.008	1915×	325×	$53.75 \times$	$7.50 \times$
PG2	10.94	1.12	1.06	0.10166	0.010	$1094 \times$	112×	106×	$10.06 \times$
PG3	-	-	-	0.13666	0.04200	-	-	-	$3.25 \times$
PG4	-	-	-	0.25666	0.10100	-	-	-	$2.54 \times$
Avg. Speedup						$778 \times$	277.85×	$76.84 \times$	$10.74 \times$

COMPARATIVE STUDY OF CPU RUNTIME FOR OUR PROPOSED ML-BASED APPROACH WITH WORKS OF [14], [16]–[18] FOR IBM POWER GRID BENCHMARKS.

ROADMAP

- Electronic Design Automation (EDA) (Collaboration Invited)
 - 1. Analog/RF Circuit Simulator:
 - Planned release of the analog/RF circuit simulator for beta version with standard libraries by December 2025 with SCL PDK integration and testing
 - Release to the academia free of cost
 - Integration with the VLSI Design Flow
 - TCAD Simulator
 - Advanced models such as Quantum Ballistic, Hydrodynamic transport models December 2025
 - Supports NEGF and GW Approximation by March 2026
 - Floorplanning, Placement and Routing Engine to be released by December 2025
 - ML-based Power Grid Analyzer to be released by December 2025

A GLIMPSE OF INDIAN ACADEMIA

- 800+ Universities
- 35000+ Colleges affiliated with the universities
- 2100+ Diploma colleges in India
- 38 Million Students in science stream
- I.I Million students in Engineering domain every year
- Top 100 universities including 23 IITs produce < 10,000 students (probably!) every year in the VLSI domain

 Daksh Gurukul is a joint initiative of National Skill Development Corporation (NSDC) under Ministry of Skill Development and Entrepreneurship (MSDE) and IIT Guwahati.

Objectives:

- Outcome-driven credit-linked advanced certification programs ensuring the Indian students/industry professionals industry-ready by enhancing their knowledge skill set providing sessions
- Designing workforce-ready curriculum for students to maintain a sustainable career.
- This initiative envisages to support Government of India's Start-up India, Make-in-India and Atmanirbhar Bharat initiatives and also work towards India's collective visions for Industry 4.0, Healthcare 4.0, Smart City and Look East Policy for Vikshit Bharat.
- 500,000 Advanced ESDM Workforce in coming 05-10 years through Product-based Advanced Certification Programs

		Duration	
SI. No.	Course Name	(hours)	Credits
1.1	Advanced Certification on FPGA based Digital IC Design	600	20
2	Advanced Certification on Digital Design Verification	750	25
3	Advanced Certification on Design for Testing (DFT)	750	25
4	Advanced Certification on VLSI Design Synthesis and Static Timing Analysis	570	19
5	Advanced Certification on VLSI Physical Design and Signoff	840	28
6	Advanced Certification on Complete ASIC Design Flow	1500	50
7	Advanced Certification on IC Packaging and Manufacturing (Kaynes Technology)	540	18
8	Advanced Certification on Multilayer PCB Design	540	18
9	Advanced Certification on Analog IC Design	600	20
0	Executive Certification on Analog IC Design	600	20
11	Advanced Certification on Radio Frequency Integrated Circuit (RFIC) Design	600	20
12	Executive Certification on Radio Frequency Integrated Circuit (RFIC) Design	600	20
12	Advanced Certification on Industrial IoT and Edge computing	720	24
12	Advanced Certification on Artificial Intelligence and Machine Learning	720	24

Course Name Min Qualification Code NSQF Level Credits Earned	RTL Design and FPGA Implementaion (Short-term) BTech/BE/BSc 3rd Year Completed VLSI01 5.5 20			Course Name Min Qualification Code NSQF Level Credits Earned	RTL Design & Data Verificati BTech/BE/BSc Completed VLSI02 6 25	on (Short-term	n)
Code	NOS Module Name	No. of Hrs	Credits Earned	Code	NOS Module Name	No. of Hrs	Credits Earned
VLSI05N01	VLSI Digital Integrated Circuits	60	2	VLSI05N01	VLSI Digital Integrated Circuits	60	2
VLSI05N02	VLSI System Design	60	2	VLSI05N02	VLSI System Design	60	2
VLSI05N03	VLSI DSP	60	2	VLSI05N03	VLSI DSP	60	2
VLSI05N04	Hardware Description Language	120	4	VLSI06N01	Introduction to Scripting	120	4
VLSI06N02	High Level Synthesis	60	2	VLSI05N04	Hardware Description Language	120	4
VLSI06N03	FPGA Implementation	90	3	VLSI06N04	Data Verification	180	6
	On the Job	150	5		On the Job	150	5
	Total	600	20		Total	750	25

Course Name Min Qualificatior Code NSQF Level Credits Earned	Design for Testing (DFT) (Short-term) nBTech/BE/BSc Completed VLSI03 6 25			Course Name Min Qualification Code NSQF Level Credits Earned	RTL Synthesis & Static Timi nBTech/BE/BSc Completed VLSI04 6 19	ng Analysis (S	hort-term)
Code	NOS Module Name	NOS Module Name No. of Hrs Credits Earned		Code	NOS Module Name	No. of Hrs	Credits Earned
VLSI05N01	VLSI Digital Integrated Circuits	60	2	VLSI05N01	VLSI Digital Integrated Circuits	60	2
VLSI05N02	VLSI System Design	60	2	VLSI05N02	VLSI System Design	60	2
VLSI05N03	VLSI DSP	60	2	VLSI05N03	VLSI DSP	60	2
VLSI06N01	Introduction to Scripting	120	4	VLSI06N01	Introduction to Scripting	120	4
VLSI05N04	Hardware Description Language	120	4	VLSI06N06	RTL Synthesis	60	2
VLSI06N05	Design for Testing (DFT)	180	6	VLSI06N07	Static Timing Analysis	60	2
	On the Job	150	5		On the Job	150	5
	Total	750	25		Total	570	19
ADVANCED ESDM WORKFORCE DEVELOPMENT

Course Name	VLSI Physical Design (Short-term) M.Tech Completed / Ph.D. 2nd year VLSI04			Course Name	ASIC Design (Long-Term)		
				Min Qualification BTech/BE/BSc Completed			
				Code	VLSI04 6 50		
Quanneation				NSQF Level			
				Credits Earned			
NSQF Level							Cuadita
Credits Earned	19			Code	NOS Module Name	No. of Hrs	Earned
Code	NOS Module Name	No. of Hrs	Credits Earned	VLSI05N01	VLSI Digital Integrated Circuits	60	2
VLSI05N01	VLSI Digital Integrated Circuits	60	2	VLSI05N02	VLSI System Design	60	2
				VLSI05N03	VLSI DSP	60	2
VLSI05N02	VLSI System Design	60	2	VLSI06N01	Introduction to Scripting	120	4
VLSI05N03	VLSI DSP	60	2	VLSI05N04	Hardware Description Language	120	4
				VLSI06N04	Data Verification	180	6
VLSI06N01	Introduction to Scripting	120	4	VLSI06N05	Design for Testing (DFT)	180	6
VLSI06N07	Static Timing Analysis	60	2	VLSI06N06	RTL Synthesis	60	2
				VLSI06N07	Static Timing Analysis	60	2
VLSI06N08	PnR flow in PD	120	4	VLSI06N08	PnR flow in PD	120	4
	On the Job	180	6	VLSI06N09	Sign-Off Methods and Tapout Process	120	4
	T . ()	660	22		On the Job	360	12
	Iotal	660	22		Total	1500	50

THANK YOU