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Executive Summary 
The days of CMOS technology with one-size-fits-all devices and architectures, no 
longer suffice to address the diverse needs of advanced computation systems – from 
artificial intelligence (AI) and machine learning (ML) requirements in graphic processing 
units (GPUs) and augmented and virtual reality (AR/VR) devices, to systems for 
autonomous vehicles and edge AI for the Internet of Things (IoT). Each of these 
emerging applications requires specialized solutions tailored to its specific performance, 
power, and latency requirements. As a result, there is a growing push towards more 
customized hardware architectures, including application-specific integrated circuits 
(ASICs), field-programmable gate arrays (FPGAs), and neuromorphic chips, to meet the 
unique challenges posed by the future of computing. 
 
While Power-Performance-Area-Cost (PPAC) remains key for CMOS and DRAM, other 
key drivers for research and development in advanced computing have emerged to 
address the disparity between processor speed and memory performance (“memory 
wall”), the improved performance without a proportional increase in power 
consumption (“power wall”) and sustainable manufacturing. In this report, several 
ingredients have been identified to maintain exponential growth in performance, 
although the rate of CMOS scaling has slowed since around 2008.  
 
Scaling will continue to improve thanks to the current roadmaps for FinFETs, 
nanosheets, forksheets, complementary FET and Fully-Depleted Silicon-On-Insulator 
(FDSOI) architectures. Further advances will be driven by the introduction of new 
materials and devices for both logic and memory. Connectivity improvements will 
enhance performance and upcoming technologies like 6G wireless might even be used 
for improvement at a finer scale. In addition, new compute architectures will be 
essential to meet the growing diversity of applications. These will likely include SoC 
architectures enabled by CMOS 2.0, and specialized brain-inspired computing and 
quantum accelerators for specific tasks, designed to overcome the limitations of 
traditional computing systems. 
 
International cooperation is essential for accelerating technological innovation and 
strengthening semiconductor value chains and is in line with the objectives of the EU 
Chips Act. In this context, the report does not only lay out the above technologies but 
also identifies various topics for EU to be active. 

1 Overview 

1.1 Purpose 

The purpose of this deliverable is to present the findings from the analysis of existing 
international roadmaps (e.g., IRDS, IPSR-I, ECS-SRIA, NEREID) and their connections 
to other relevant CSAs (e.g., those focused on graphene and quantum computing), as 
well as insights from previous studies, knowledge from the consortium and partner 
network, desk research, and brainstorming sessions. This analysis focuses on future 
technologies in advanced computation that hold potential for exploitation through 
collaboration. Additional objectives include creating a comprehensive map of 
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international research on future technologies and comparing the European status with 
that of other leading countries in areas identified as critical for Europe. 

2 Future Technologies for Advanced Computation 

2.1 Trends 

With the world’s digitalization, the amount of generated data is seen as exponentially 
growing in the coming years (Fig.1), not only through human activity, but also through 
smart factories, transportation, smart grids, and other critical infrastructures. The 
forecast of these data is already believed to be obsolete, with the huge wave of Artificial 
Intelligence that will dramatically impacts the generation of data. 
 

 
Fig.1: Evolution of the global data generation (actual and forecast)  

 
Unsurprisingly, today’s computational needs are largely dictated by AI and machine 
learning (ML) advancements, as demonstrated in Fig. 2. These technologies have fuelled 
an insatiable demand for processing power, with compute needs evolving significantly 
over the years. 
 
To better understand this evolution, let's examine compute needs through the lens of 
machine learning. From the early days of ML in the 1950s, compute needs were modest 
and progressed steadily, largely following Moore’s Law — doubling every two years as 
transistor density improved. However, since around 2010, the landscape has 
transformed dramatically. The advent of deep neural networks and more efficient 
training algorithms has caused compute requirements to skyrocket. In contrast to the 
previous decades, compute needs are now doubling every six months. This dramatic 
increase can be attributed to both the complexity and the scale of modern ML models. 
 
In recent years, the emergence of extremely large models—some containing over a 
trillion parameters—has further driven up the demand for computational power by 
orders of magnitude beyond that required for conventional deep learning models. 
These massive models, designed to tackle increasingly complex tasks, highlight the 
unprecedented scale at which computational infrastructure must operate to support 
the future of AI. This trend emphasizes the need for advancements not only in AI 
algorithms but also in the hardware and infrastructure required to meet the growing 
demands of next-generation applications. 
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Fig.2: Compute needs (number of floating points operations per second) as function of the 
introduction year of machine learning (ML) models 

 
AI and ML have been the primary drivers of GPU advancements, as the parallel 
processing capabilities of GPUs are uniquely suited to handle the immense 
computational demands of training and running complex machine learning models. 
Beyond the use of GPUs for AI training and inference, a variety of emerging applications 
are driving unique workloads that demand different hardware capabilities and 
technology specifications. Each of these applications places specific requirements on 
compute infrastructure that go beyond traditional GPU-focused solutions. 
 
For instance, GPUs used for training ML models must support high-throughput parallel 
compute. They require not only the ability to handle massive data processing tasks but 
also the capacity for high-bandwidth data movement, both within the system's DRAM 
and between other GPUs in multi-GPU configurations.  
 
In contrast, augmented and virtual reality (AR/VR) solutions place a premium on low 
power consumption and compact form factors. These systems must also support high 
data bandwidths with minimal latency to seamlessly display high-definition video, 
ensuring a smooth and immersive user experience. The balance between power 
efficiency and performance is critical for mobile and wearable AR/VR devices, where 
energy constraints and form factor limitations are key design challenges. 
 
Similarly, autonomous vehicles present their own set of demands. These systems rely 
on real-time data aggregation from multiple sensors, such as cameras, LiDAR, and radar. 
The compute architecture must be capable of processing and interpreting this sensor 
data quickly enough to enable real-time decision-making and responsive action. This 
requires low-latency, high-reliability compute systems optimized for real-time 
inference in unpredictable environments. 
 
The days of CMOS technology with one-size-fits-all devices and architectures may no 
longer suffice to address these diverse needs. Each of these emerging applications 
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requires specialized solutions tailored to its specific performance, power, and latency 
requirements. As a result, there is a growing push towards more customized hardware 
architectures, including application-specific integrated circuits (ASICs), field-
programmable gate arrays (FPGAs), and neuromorphic chips, to meet the unique 
challenges posed by the future of computing. 
 

2.2 Challenges for the semi-conductor industry in terms of data deluge 

Needless to say, the semi-conductor industry is facing a number of challenges. We can 
identify four critical areas that need to be addressed to support the continued growth 
and development of advanced computing technologies: 
 
1. CMOS and DRAM PPAC (Power-Performance-Area-Cost): As technology scales, 
traditional CMOS and DRAM technologies are hitting limits in terms of their ability to 
improve power efficiency, performance, area (size), and cost simultaneously. These 
components are essential for many computing systems, but new innovations are 
required to enhance their PPAC metrics to keep up with growing computational 
demands. Fig. 3 (left figure) shows that while traditionally the CPU single-thread 
performance has grown significantly during the early years, with an impressive rate of 
50% improvement per year up to around 2008, today this rate has dramatically slowed 
down to a mere 5% annual improvement. 
 

 
Fig.3: (left) CPU performance as function of the introduction year; data taken from M. Horowitz, F. 
Labonte, O. Shachan, K. Olukotun, L. Hammond, C. Batten. Additional data compiled by K. Rupp; 
(right) Design costs as function of CMOS technology node. Source: “AI Chips and why they matter”, 
S. Khan and A. Mann, 2020 

 
Next to that, the complexity of advanced CMOS technology nodes has led to increasing 
costs not only in developing and manufacturing the technology but also in designing in 
these nodes. As the semiconductor industry moved towards smaller nodes (7nm, 5nm, 
etc.), the cost of designing chips has skyrocketed, as shown in the graph on the right. 
This raises the question: While we design these ICs for AI/ML applications, how far can 
AI help in addressing the design cost challenges? 
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AI-driven tools have the potential to optimize various stages of chip design, such as 
automating parts of the design process, improving verification and testing, and 
enhancing predictive modeling for performance and thermal management. Additionally, 
AI could help in balancing the trade-offs between power, performance, and area (PPA), 
potentially allowing designers to create more efficient chips at lower costs. However, 
it's still an open question whether AI can substantially mitigate the rising costs and 
complexity. 
 

 
Fig.4: SRAM size as function of introduction year. 

 
Historically, SRAM, a fundamental building block in logic technology, served as the 
benchmark for scaling. Each new technology node used to achieve a 0.7x linear scaling, 
translating to approximately 50% area reduction for SRAMs, which helped improve 
both performance and power efficiency (Fig. 4). 
 
However, around 2008, this consistent progression began to falter as gate-pitch scaling, 
a critical factor in transistor density improvements, started to slow down. In recent 
years, the slowdown has become even more pronounced, significantly affecting the 
ability to sustain previous rates of miniaturization and efficiency gains. As a result, 
alternative technologies and architectural innovations are increasingly being explored 
to maintain progress in the post-Moore’s law era. 
 
2. Memory Wall: The "memory wall" refers to the growing disparity between processor 
speed and memory performance. As compute power increases, the ability to access 
memory quickly enough becomes a bottleneck, slowing down overall system 
performance. Overcoming this requires innovations in memory architectures and 
technologies to ensure fast and efficient data transfer between memory and 
processors. 
 
3. Power Wall: The power wall represents the challenge of improving performance 
without a proportional increase in power consumption. As compute workloads grow, 
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the energy required to power these systems becomes a limiting factor. Addressing this 
issue involves optimizing power efficiency, especially for applications like AI and 
machine learning that demand high computational throughput. 
 
4. Sustainable Manufacturing: The environmental impact of manufacturing is an 
increasing concern. The IC manufacturing processes have a significant environmental 
impact, and as demand for integrated circuits continues to rise, the need for sustainable 
solutions grows [1]. The information technology sector is estimated to contribute up to 
5% of total global emissions in terms of equivalent CO2 [2]. This includes the impact of 
all devices, from datacenters to mobile phones, as well as their use, manufacturing, and 
the energy consumed by networks. Although only a portion of this impact can be 
attributed to semiconductor manufacturing, it remains a resource-intensive process, 
consuming large amounts of energy, water, chemicals, and raw materials through a 
complex supply chain. 
 
While the Life Cycle Assessment (LCA) is a well-established method for evaluating the 
environmental impact of products, conducting an accurate LCA for integrated circuits 
is still challenging due to the scarcity of current information. Much of the data used 
today is outdated, leading to errors and variability in the LCA of electronic products, 
which complicates efforts to assess their environmental impact accurately. 
 
Closing this data gap requires collaboration across the industry. Stakeholders must 
work together to improve data collection, develop new measurement techniques, and 
establish common standards and frameworks for reporting environmental impact. Such 
efforts will promote transparency, accountability, and innovation, while ensuring that 
the industry contributes to addressing pressing environmental challenges. One of these 
platforms is imec.netzero [3]. This is a modeling platform which provides a detailed, 
bottom-up view of the environmental impact associated with various semiconductor 
manufacturing processes. By simulating the energy, water, mineral consumption, and 
greenhouse gas emissions across different technology nodes, imec.netzero helps the 
semiconductor industry identify and reduce high-impact processes, contributing to its 
goal of achieving net-zero emissions by 2040. 
 
In the remainder we will address some of the challenges mentioned in previous 
paragraphs in more detail, as well as their potential solutions. 
 

2.3 The ingredients for continued compute system scaling 

Despite the challenges mentioned before, future compute systems are expected to 
maintain exponential growth in performance, although the rate of CMOS scaling has 
slowed since around 2008. Despite this, advances will be driven by the introduction of 
new devices and materials for both logic and memory. Connectivity improvements, 
particularly through 3D integration and photonics, are already enhancing performance, 
and upcoming technologies like 6G wireless are poised to play a crucial role in improving 
e.g. datacenter connectivity but might even be used at a finer grained scale. 
Additionally, new compute architectures will be essential to meet the growing diversity 
of applications. These will likely include SoC architectures enabled by CMOS 2.0 and 
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specialized quantum accelerators for specific tasks, designed to overcome the 
limitations of traditional computing systems.  
 

 CMOS scaling but not as we (used to) know it 
Transistors will remain vital to general-purpose computing, despite the emergence of 
new paradigms like e.g. quantum computing. While quantum technology shows great 
promise for specific complex problems, it is unlikely to replace traditional computing 
entirely. The efficiencies gained through decades of optimizing CMOS technology will 
continue to be leveraged. 
 
Over the last decades, the industry has defied expectations through breakthroughs in 
EUV lithography, new materials, and device architectures like FinFETs and high-k 
dielectrics. These innovations have extended Moore’s law. Especially EUV has been 
crucial to extend the CMOS scaling roadmap. By the 2nm technology node, it is 
expected that the fourth generation of EUV patterning will be employed. However, 
pitches below 28nm will require multiple-patterned EUV steps, which add significantly 
to the complexity, cost and ecological footprint of the process. 
 
To address this challenge, high numerical aperture (NA) extreme ultraviolet (EUV) 
systems with a 0.55 NA are projected to become available around 2026-2027. This 
next-generation EUV technology will allow some multi-patterned pitches to be reduced 
to single-exposure steps, simplifying the process and reducing costs while advancing 
scaling capabilities. 
 
Next to that, Fully-Depleted Silicon-On-Insulator (FDSOI) technologies can be seen as 
complementary to the FinFET-based track. It is a semiconductor technology that 
enables efficient performance and energy savings, making it highly suitable for low-
power applications. It is particularly valuable in mobile devices, automotive applications, 
IoT (Internet of Things) devices, and RF communications due to its ability to reduce 
power leakage and operate efficiently at low voltages. Additionally, FDSOI is known for 
providing excellent control over transistor behavior through back-biasing, which allows 
fine-tuning of performance and power trade-offs. 
 
The FDSOI roadmap includes continued development of smaller nodes, with current 
technologies around 22nm and 12nm, and future plans targeting 10nm and beyond. 
This progression ensures that the technology will remain competitive in power-
sensitive domains, offering a cost-effective alternative to FinFET in specific 
applications. 
Going back to the FinFET-based CMOS scaling roadmap (Fig. 5), as feature sizes 
continue to shrink, the industry faces increasingly difficult physical and technical 
challenges. To overcome these, the transition from FinFET to nanosheets is underway 
for the 3/2nm technology node, with forksheet as the next step. This architecture 
allows for area scaling by reducing n-to-p spacing, thereby shrinking standard cell 
heights. 
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Fig.5: Scaling roadmap logic transistor. Nomenclature: Nxx=xx nm node, Axx=xx Å node [4] 

 
Looking ahead, the semiconductor industry is exploring the complementary field-effect 
transistor (CFET) for post-1nm scaling. By vertically stacking n- and pMOS devices, 
CFET promises further optimization of channel width and drive current, offering 
another path for area scaling and potentially reducing cell heights to four tracks or less. 
 
While CFET offers significant potential, it is pushing the limits of materials and process 
tools. Many of the required technologies are still in early R&D stages, making large-
scale manufacturing of CFET devices a long-term prospect, likely more than a decade 
away. 
 

 New materials and device concepts 
While Si-based transistors have dominated electronics for decades, the future likely 
involves a variety of new switch types built from different materials and governed by 
alternative physical principles. Among these, 2D materials are emerging as one of the 
most promising areas of research, thanks to their exceptional properties such as high 
mobility, flexibility, and tunability.  
 
2D materials like tungsten disulphide (WS2) and hafnium disulphide (HfS2), part of the 
transition metal dichalcogenides (TMD) family, offer unique advantages in CMOS 
technology. Their atomic-thin layers enable conduction channels that can be scaled 
below 10nm, significantly reducing short channel effects while maintaining 
performance. Unlike the previous excitement surrounding III-V materials, which 
ultimately lost their edge over silicon at scaled dimensions, 2D materials maintain their 
high mobility and lower dielectric constants at nanometer-scale dimensions, making 
them better suited for continued scaling beyond silicon’s limits. 
 
However, several challenges remain before 2D materials can be integrated into 
commercial transistors. Issues such as material growth quality, contact resistance, 
doping, and gate dielectric formation need to be resolved. Despite these obstacles, the 
use of 2D materials in nanosheet or CFET architectures appears highly likely, as their 
ultra-thin structures are ideal for stacking to improve drive current and reduce 
footprint.  
 
There are additional opportunities to integrate 2D materials earlier in the development 
process. For example, they could be implemented as power switches in the backend or 
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on the wafer's backside, where performance requirements are less stringent. In the 
context of CMOS 2.0, 2D materials can also serve as a low-capacitance, low-drive logic 
layer for driving short interconnects, offering a practical solution before full-scale 
integration into more performance-critical applications. 
 
Another technology on the roadmap is the Dirac cold source FET. This concept 
leverages 2D materials to create a more energy-efficient transistor by reducing thermal 
excitations, offering significant power-saving advantages. While this technology is still 
in development, its potential to achieve near-ideal subthreshold swing makes it highly 
attractive for future low-power devices. 
 

 
Fig.6: Operation principle of the Dirac cold source FET. Taken from [5]. 

 
In addition to 2D materials, carbon nanotubes (CNTs) are also gaining renewed 
attention. CNTs possess excellent electrical properties, including high mobility and 
current-carrying capacity, making them ideal for high-performance transistors. 
However, challenges like the difficulty in growing and aligning uniform nanotubes have 
delayed their widespread adoption although significant progress has been made over 
the last decade. 
 
In general, the pros of 2D materials and CNTs include their ability to operate efficiently 
at ultra-small scales, their high mobility, and their potential for low-power operation. 
On the downside, material growth, integration, and contact formation remain 
significant technical challenges that need to be addressed before these materials can 
replace or complement silicon in mainstream electronics. 
 

 CMOS 2.0 – The next generation of scaling? 
CMOS 2.0 represents a significant evolution in semiconductor technology, aiming to 
tackle the power, performance, and scaling limitations of traditional silicon-based 
CMOS as it reaches its physical boundaries. This new approach combines 
heterogeneous technologies, 3D transistor stacking, and advanced materials to 
enhance chip performance, efficiency, and scalability. The evolution from 
homogeneous platform (CMOS 1.0) to heterogeneous platform (CMOS 2.0) is shown in 
Fig. 7. 
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Fig.7: Evolution from a homogeneous platform where CMOS was a one-device-fits-all technology to 
a finer-grained heterogeneous platform. 

 
One of the key innovations is heterogeneous integration, where various components 
like logic and memory are brought together on a single chip, eliminating inefficiencies 
and reducing power consumption. Additionally, 3D stacking allows for the vertical 
layering of transistors, increasing component density without expanding the chip’s 
physical size, which opens new possibilities for more powerful yet compact devices. 
Also, we will see more and more the use of the wafer and chip backside, going from 
implementing passive structures like backside power delivery connections to active 
devices. 
 
CMOS 2.0 also incorporates the use of new, often dissimilar materials as compared to 
Si, such as e.g. GaN for power management. Another exciting development is 
neuromorphic computing, which mimics the structure of the human brain, enabling 
more energy-efficient processing for applications like artificial intelligence and 
advanced computing tasks. These innovations make CMOS 2.0 crucial for addressing 
the needs of next-generation technologies such as AI, IoT, and high-performance 
computing.  
 
In general, CMOS 2.0 offers a platform where advanced compute and advanced 
functionalization can coexist and complement each other. However, with a zoo of 
different devices, features and materials, a System-Technology-Co-Optimization 
(STCO) framework is required to optimize the performance of these complex systems 
[6]. 
 

2.4 Addressing the memory wall 

Among all the power consumption tasks in an Integrated Circuit (IC), data movement 
and storage are today known as the major ones, and consume much higher energy than 
that required to process the data, as illustrated in Fig.8 (800 times more energy for 
operand fetching). By moving away for the Von Neumann architecture, we can expect 
to reduce by 90% the energy consumption. Lots of efforts need to be done in that field. 
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Fig.8: Part of the energy consumed in an IC, to compute or to store the data. Source: Bill Dally, “To 
ExaScale and Beyond”, 2010 

 
By comparing the performances (Computation Performance in GOPS versus the 
Computation efficiency in GOPS/W) between existing ICs and bio Systems like Honey 
Bee brain or Human brain, we clearly see that the ICs are well under the performance 
of the bio systems (Fig.9). 

 
Fig.9: Comparison of the computing efficiency and the computing performance of existing Integrated 
circuits and biology systems. 

 

 How to mimic the Human Brain? 
Try to mimic those bio systems is thus the key to some big breakthrough in terms of 
Power Efficiency. The use of Back-End-Of-Line (BEOL) Memories is appearing to be a 
key enabler as they allow to mimic neuron networks, as illustrated in Fig.10. This 
examples is shown for PCRAM but can be extrapolated to any other types of Memories 
(MRAM, OxRAM, FeRAM,…). Key performances of the existing Non-Volatile Memories 
are summarized in Fig.11, with a comparison of the Flash Technology available widely 
in the Industry. 
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Fig.10: Neuron network simulation using PCRAM network. 

 

 
Fig.11: Comparison of the performance of the existing BEOL Memories. 

 
Human brain exhibits typical characteristics, like asynchronous communication, 
plasticity, sensing, 3D structure and learning during our entire life. It is essential to be 
able to reproduce those characteristics in the Integrated Circuit. This can be done, as 
shown in Fig.12, by using Spiking coding, re-configurability, smart sensors, dense 3D 
integration and new algorithms allowed by the use of new technologies. 
 

 
Fig.12: Characteristics of Human Brain with the corresponding feature for the mimic Integrated 
Circuit  

 
By utilizing available on-chip memories, including SRAM and embedded Non-Volatile 
BEOL memories, it is possible to shift from the traditional Von Neumann architecture 
towards Near-Memory Computing. Logic and arithmetic operations can now be 
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redefined using these memory resources, effectively bringing memory closer to the 
logic. 
 
Resistive memories allow for further advancements by enabling In-Memory Computing, 
where memory units are directly involved in computation. This eliminates the energy 
consumption associated with data movement. 
 
Unlike CMOS-based memories such as static or dynamic random access memories, 
which store one bit per unit cell, resistive memories can be programmed to intermediate 
states between their lowest and highest resistance values. This feature allows for the 
compact storage of synaptic weights in neural networks. Additionally, using 
fundamental laws of electric circuits, arrays of memristors can implement the core 
operation of deep learning—Multiply and Accumulate (MAC). In this case, the multiply 
operation is governed by Ohm’s law, while accumulation is performed according to 
Kirchhoff’s current law (Fig.13). 
 

 
Fig.13: Evolution from Von Neumann architectures towards Near Memory computing, by 
implementing logic and arithmetic operations with Memory technologies  

 
This concept has been successfully demonstrated on-chip, achieving high energy 
efficiency and performance in the tera operations per second range, with flexibility to 
support diverse models and accuracy comparable to software implementations. 
However, practical realization faces challenges due to memory variability, 
imperfections in analog CMOS circuits, and voltage drop effects. These challenges can 
be addressed through specialized programming schemes [7], circuit optimizations, or by 
combining memory arrays with emerging computing paradigms (see Fig. 14). 
 
Binarized neural networks represent one such paradigm, where both synaptic weights 
and neuronal activations are limited to binary values (+1 and −1). This reduces the need 
for multi-level programming and, in turn, minimizes variability. These networks are well-
suited for various embedded memory technologies, such as RRAM, PCM, and MRAM. 
Recently, a binarized neural network was demonstrated based on filamentary resistive 
memories and powered by a miniature wide bandgap solar cell optimized for edge 
applications [8]. 
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Fig.14: Different approaches pushed for In-Memory-Computing Artificial Intelligence 

 
Another approach incorporates computational principles inspired by the brain into 
neuromorphic circuits and architectures. These circuits are naturally tolerant to 
variability, mirroring biological systems' ability to make accurate decisions despite 
operating on unreliable substrates with imprecise neurons and synapses. Unlike 
traditional artificial neural networks (ANNs), biological neurons display complex internal 
temporal dynamics and interact through sparse, event-driven signals (spikes). The brain 
also processes information hierarchically, at different temporal scales—from 
milliseconds at the synapse level to seconds at dendrites and even minutes to hours 
within the neural network. Replicating these multi-timescale processes within compact 
CMOS technology remains a significant challenge. A promising solution is to leverage 
novel nanodevices, such as resistive memories, which have demonstrated the capability 
to implement varying time constants across synapses [9], neurons [10], dendritic arbors 
[11], and the broader neural network [12]. 
 
A third approach embraces the inherent randomness of memory devices, using their 
properties to compute efficient Bayesian algorithms. Bayesian neural networks offer a 
major advantage in sensory processing tasks, as they handle limited data effectively and 
estimate uncertainty with precision. In these networks, synaptic weights are not fixed 
values but are instead modeled as probability distributions. The natural variability in 
filamentary resistive memories and phase-change memories can represent these 
distributions as multi-level random variables [13], [14]. 
 
A fourth approach involves Ising networks, which utilize binary stochastic spintronic 
devices to generate stochastic bit streams, known as probabilistic bits or p-bits. While 
Magnetic Tunnel Junctions (the fundamental components of MRAM) may not offer the 
same degree of synaptic granularity as resistive memories, they excel in autonomous 
binary sequential sampling. This makes them particularly well-suited for physically 
implementing interacting binary stochastic neurons in Ising machines [15]. 
 
Despite significant progress in low-power AI using in-memory computing devices, 
current implementations are still limited to pre-programmed inference hardware. The 
next challenge is to develop adaptive learning capabilities that allow systems to handle 
real-world dynamics more effectively. Continual learning, which enables the 
accumulation of knowledge without catastrophic forgetting, is especially valuable for 
edge devices that frequently interact with environmental data. However, implementing 
edge AI remains difficult with current memory technologies, particularly when 
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balancing the conflicting requirements for training and inference under strict energy 
constraints. 
 
Previous approaches for edge models small enough to fit on-chip have used separate 
SRAM and RRAM macros for training and inference, respectively. This design results in 
area overhead and delays due to data transfer. To address this, the concept of "hybrid 
memory" was introduce which integrates two distinct memory technologies at the 
device level with fine granularity to enable on-chip learning. 
 
The monolithic integration of two on-chip memory technologies—oxide semiconductor 
gain cells and Resistive RAM— was demonstrated into a compact joint memory cell on 
a Si CMOS platform [16]. Additionally, a unified memory stack was proposed based on 
silicon-doped hafnium oxide and a titanium scavenging layer. This stack functions as 
both a memristor and a ferroelectric capacitor and is integrated into the back-end-of-
line (BEOL) of a standard CMOS process. This technology offers an efficient and cost-
effective solution for AI devices with learning capabilities, requiring no additional masks 
and only a few extra process steps [17-18]. 
 
Finally, our vision is that hardware innovation will continue to meet the ever-increasing 
demand for computing power through 3D integration technologies. This technology 
enables the vertical stacking of logic, memory, and sensing components using 
unconventional fabrication processes. It can also be employed to increase on-chip 
storage capacity, allowing massive neural network weights to be fully hosted on-chip. 
Additionally, 3D integration reduces latency and power consumption due to shorter 
interconnects, improves bandwidth between stacked layers by enabling multiple 
connections, and facilitates the integration of heterogeneous layers, each optimized for 
a specific function [19]. 

 3D and Chiplet approach to enable heterogeneous integration for Power 
Efficiency 

It is now well established that the combination of different kinds of integrated circuits 
by 2.5 and 3D technologies is a way to combine the best of different technologies and 
the miniaturization to provide higher performance, flexibility and modularity with 
drastic energy efficiency benefits.  
 
Instead of using a large monolithic die, that can suffer from a lower yield or increased 
parasitics due to a larger distance between CPU and Memories, it is well understood 
that moving to a chiplet concept is key. The chiplet approach is a disagregation of a 
large IC into smaller ICs with similar functionalities at smaller scale, approach (see 
Fig.15) that can significantly improve the overall performance. 
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Fig.15: Disaggregation of a monolithic chip into several chiplets, re-aggregated together using 3D 
integration. 

 
This chiplet approach is clearly enabled by advanced 3D technological bricks (high 
density through silicon vias, wafer-to-wafer and die-to-wafer direct hybrid bonding, 3D 
sequential integration… that are illustrated on Fig.16. 
 
This toolbox provides different techniques, not necessarily equivalent in terms of 
density of connections. Among those techniques, the Hybrid Bonding Technology 
(based on Cu/SiO2 structures) appears to be the most promising one as it allows an 
interconnection pitch in the range of 1-2µm for the most advanced research groups 
(illustrated on Figs. 17 & 18). 
 

 
Fig.16: 3D integration technological toolbox used for chiplet approach 
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Fig.17: Various options of Hybrid Bonding Technologies: Wafer to Wafer, Die to Wafer with or 
without the Self-Assembly technique. 

 
 

 
Fig.18: Alignment performance of Die to Wafer Hybrid bonding technology. Comparison of Industry 
and R&D data.  

 

2.5 EU and non EU actors in the field of advanced Computing Technologies 

It is very important to identify the fields where EU is active in terms of Research and 
Manufacturing. Preliminary radar plots have been elaborated for technologies on 
Advanced Computation during the ICOS project with the intent to highlight where EU 
is strong and where strong improvements are needed. Same plots have been done for 
US and Asia. Those plots are inserted in Fig. 19 to 21. 
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Fig.19: Radar plot highlighting the positioning of EU actors in the field of Advanced Computing.  

 
 

  
Fig.20: Radar plot highlighting the positioning of 
US actors in the field of Advanced Computing.  

Fig.21: Radar plot highlighting the positioning of 
Asian actors in the field of Advanced Computing. 

 
We can mention that EU is very strong in R&D in all the domains of Advanced 
Computing. This is mainly due to its strong RTOs (in 200 and 300mm) and its large 
portfolio of Universities in the different countries.  
 
Regarding the manufacturing, we notice a weak part in the field of advanced CMOS 
technologies (with both FEOL and BEOL technologies), as well as in the field of 
advanced materials. For all the other topics (Memories, Heterogeneous integration, 
advanced patterning, Quantum computing), EU is quite well positioned. 
 
US and Asia have similar profiles, for both R&D and Manufacturing. It is interesting to 
note that they both look stronger in manufacturing than in R&D. This might be a 
consequence of the strong positioning of their key players in the field of 
Semiconductors (Foundries, Fabless) that are doing a lot of R&D internally. 

3 Conclusion 

The "Report on Future Technologies for Advanced Computation" underscores the vital 
importance of international cooperation in the semiconductor sector, particularly in the 
context of emerging technologies that promise to drive significant advancements in 
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various applications of computational systems. The latter include artificial intelligence 
and machine learning in graphic processing units, augmented and virtual reality devices, 
advanced driver-assistance systems and their advancement for autonomous vehicles, 
edge AI for the Internet of Things. Each of these emerging applications requires 
specialized solutions tailored to its specific performance, power, and latency 
requirements.  

The underpinning diversification of ‘advanced compute’ needs implies that one-size-
fits-all devices and architectures based on CMOS technology will no longer suffice. This 
calls for an interconnected global landscape where fostering collaboration among 
nations, research institutions, and industry leaders is essential to accelerate 
technological innovation and strengthen the semiconductor value chains. This 
alignment is not only crucial for meeting the objectives of the EU Chips Act but also for 
ensuring that Europe maintains its competitive edge in the global market. 

Besides the optimisation of Power-Performance-Area-Cost (PPAC) for CMOS and 
DRAM, key research and development has emerged to address the disparity between 
processor speed and memory performance (“memory wall”), the improved performance 
without a proportional increase in power consumption (“power wall”) and sustainable 
manufacturing. 

Transistors will remain vital to general-purpose computing, despite the emergence of 
new paradigms. For their continuous scaling several architectures will continue to 
develop according to the various roadmaps. These include FinFETs, nanosheets, 
forksheets, CFET and FDSOI. To this end, advancements will also be required in key 
enabling technologies such as high-NA EUV for small feature (~nm) patterning and 
heterogeneous integration for increasing component density without expanding the 
chip’s physical size. Further advances will be driven by the introduction of new materials 
(e.g., transition metal dichalcogenides, carbon nanotubes, oxide semiconductors and 
ferroics) and devices (e.g., steep subthreshold swing transistors and non-volatile 
memories such as PCRAM, MRAM, OxRAM, FeRAM). 

New computational paradigms will be essential to address the power and memory walls 
as well as the growing diversity of applications. In the near future, BEOL memories will 
enable brain-inspired architectures, e.g., near-memory, in-memory and neuromorphic 
computing. In the longer term, quantum computing accelerators may be used to 
overcome the limitations of traditional computing systems in a large family of 
optimisation problems. For such architectures and further performance improvements 
(e.g., in connectivity) heterogeneous integration technologies will also be a key enabler. 
 
To summarise, key Advanced Computation‘ topics for EU to be active are: 

• Classical’ Logic Scaling Roadmap beyond FinFET technology that extends 
devices structures through sub nm nodes (e.g., GAA and CFET architectures)  

• Exploration of ‘Fully Depleted SOI’ technology for Power Efficient Analog and 
RF applications 

• Exploration of alternative channel materials (e.g., 2D materials) 
• Extension of the scaling of BEOL technologies, through the use of Ru, Airgap or 

Graphene-based metallization, by reducing the associated RC network  
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• Added BEOL functionality through the introduction of new materials such as 2D, 
oxide semiconductors and ferroics 

• Exploration of the use of BEOL Non-Volatile Memories (using for example 
resistive RAM such as FeRAM, MRAM, PCRAM) for Power Efficient 
Neuromorphic-based architectures applied e.g., to embedded systems  

• Photonic chips for optical interconnects and quantum information processing  
• Demonstration of the capability of the ‘Buried Power Rail delivery’ to decongest 

the interconnection density that is becoming the most limiting factor for the 
scaling at 2nm and below  

• Enablement of the High-NA EUV lithography for the patterning of 2nm nodes 
and beyond 

• Usage of 3D integration to desegregate the classical large area chips into chiplets 
that will be much more power efficient when reconstruct using 3D integration 
design flow and associated toolbox. 

The EU is very strong in R&D in all the domains of advanced computing and the findings 
of this report illuminate semiconductor technologies for advanced computing systems 
that may benefit from international collaboration. By leveraging shared knowledge and 
resources, stakeholders can address existing challenges, drive innovation, and create a 
sustainable future in the semiconductor industry. 
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