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Executive Summary 

The days of CMOS technology with one-size-fits-all devices and architectures, no 

longer suffice to address the diverse needs of advanced computation systems – from 

artificial intelligence (AI) and machine learning (ML) requirements in graphic processing 

units (GPUs) and augmented and virtual reality (AR/VR) devices, to systems for 

autonomous vehicles and edge AI for the Internet of Things (IoT). Each of these 

emerging applications requires specialized solutions tailored to its specific 

performance, power, and latency requirements. As a result, there is a growing push 

towards more customized hardware architectures, including application-specific 

integrated circuits (ASICs), field-programmable gate arrays (FPGAs), and neuromorphic 

chips, to meet the unique challenges posed by the future of computing. 

 

While Power-Performance-Area-Cost (PPAC) remains key for CMOS and DRAM, other 

key drivers for research and development in advanced computing have emerged to 

address the disparity between processor speed and memory performance (“memory 

wall”), the improved performance without a proportional increase in power 

consumption (“power wall”) and sustainable manufacturing. In this report, several 

ingredients have been identified to maintain exponential growth in performance, 

although the rate of CMOS scaling has slowed since around 2008.  

 

Scaling will continue to improve thanks to the current roadmaps for FinFETs, 

nanosheets, forksheets, complementary FET and Fully-Depleted Silicon-On-Insulator 

(FDSOI) architectures. Further advances will be driven by the introduction of new 

materials and devices for both logic and memory. Connectivity improvements will 

enhance performance and upcoming technologies like 6G wireless might even be used 

for improvement at a finer scale. In addition, new compute architectures will be 

essential to meet the growing diversity of applications. These will likely include SoC 

architectures enabled by CMOS 2.0, and specialized brain-inspired computing and 

quantum accelerators for specific tasks, designed to overcome the limitations of 

traditional computing systems. 

 

International cooperation is essential for accelerating technological innovation and 

strengthening semiconductor value chains and is in line with the objectives of the EU 

Chips Act. In this context, the report does not only lay out the above technologies but 

also identifies various topics for EU to be active. 
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1 Overview 

1.1 Purpose 

The purpose of this deliverable is to present the findings from the analysis of existing 

international roadmaps (e.g., IRDS, IPSR-I, ECS-SRIA, NEREID) and their connections 

to other relevant CSAs (e.g., those focused on graphene and quantum computing), as 

well as insights from previous studies, knowledge from the consortium and partner 

network, desk research, and brainstorming sessions. This analysis focuses on future 

technologies in advanced computation that hold potential for exploitation through 

collaboration. Additional objectives include creating a comprehensive map of 

international research on future technologies and comparing the European status 

with that of other leading countries in areas identified as critical for Europe. 

2 Future Technologies for Advanced Computation 

2.1 Trends 

With the world’s digitalization, the amount of generated data is seen as exponentially 

growing in the coming years (Fig.1), not only through human activity, but also through 

smart factories, transportation, smart grids, and other critical infrastructures. The 

forecast of these data is already believed to be obsolete, with the huge wave of Artificial 

Intelligence that will dramatically impacts the generation of data. 

 

 
Fig.1: Evolution of the global data generation (actual and forecast)  

 

Unsurprisingly, today’s computational needs are largely dictated by AI and machine 

learning (ML) advancements, as demonstrated in Fig. 2. These technologies have 

fuelled an insatiable demand for processing power, with compute needs evolving 

significantly over the years. 

 



 

 

 

Title D3.1: Report on Future Technologies for Advanced 

Computation 

Author O. Faynot Version V1.5 

Reference  D3.1 Date 04/10/2024 

 

 

 

6 

This project has received funding (2023 – 2025) from the European Union’s 

Horizon Europe research and innovation programme under GA No 101092562. 

To better understand this evolution, let's examine compute needs through the lens of 

machine learning. From the early days of ML in the 1950s, compute needs were modest 

and progressed steadily, largely following Moore’s Law — doubling every two years as 

transistor density improved. However, since around 2010, the landscape has 

transformed dramatically. The advent of deep neural networks and more efficient 

training algorithms has caused compute requirements to skyrocket. In contrast to the 

previous decades, compute needs are now doubling every six months. This dramatic 

increase can be attributed to both the complexity and the scale of modern ML models. 

 

In recent years, the emergence of extremely large models—some containing over a 

trillion parameters—has further driven up the demand for computational power by 

orders of magnitude beyond that required for conventional deep learning models. 

These massive models, designed to tackle increasingly complex tasks, highlight the 

unprecedented scale at which computational infrastructure must operate to support 

the future of AI. This trend emphasizes the need for advancements not only in AI 

algorithms but also in the hardware and infrastructure required to meet the growing 

demands of next-generation applications. 

 

 
Fig.2: Compute needs (number of floating points operations per second) as function of the 

introduction year of machine learning (ML) models 

 

AI and ML have been the primary drivers of GPU advancements, as the parallel 

processing capabilities of GPUs are uniquely suited to handle the immense 

computational demands of training and running complex machine learning models. 

Beyond the use of GPUs for AI training and inference, a variety of emerging applications 

are driving unique workloads that demand different hardware capabilities and 
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technology specifications. Each of these applications places specific requirements on 

compute infrastructure that go beyond traditional GPU-focused solutions. 

 

For instance, GPUs used for training ML models must support high-throughput parallel 

compute. They require not only the ability to handle massive data processing tasks but 

also the capacity for high-bandwidth data movement, both within the system's DRAM 

and between other GPUs in multi-GPU configurations.  

 

In contrast, augmented and virtual reality (AR/VR) solutions place a premium on low 

power consumption and compact form factors. These systems must also support high 

data bandwidths with minimal latency to seamlessly display high-definition video, 

ensuring a smooth and immersive user experience. The balance between power 

efficiency and performance is critical for mobile and wearable AR/VR devices, where 

energy constraints and form factor limitations are key design challenges. 

 

Similarly, autonomous vehicles present their own set of demands. These systems rely 

on real-time data aggregation from multiple sensors, such as cameras, LiDAR, and 

radar. The compute architecture must be capable of processing and interpreting this 

sensor data quickly enough to enable real-time decision-making and responsive action. 

This requires low-latency, high-reliability compute systems optimized for real-time 

inference in unpredictable environments. 

 

The days of CMOS technology with one-size-fits-all devices and architectures may no 

longer suffice to address these diverse needs. Each of these emerging applications 

requires specialized solutions tailored to its specific performance, power, and latency 

requirements. As a result, there is a growing push towards more customized hardware 

architectures, including application-specific integrated circuits (ASICs), field-

programmable gate arrays (FPGAs), and neuromorphic chips, to meet the unique 

challenges posed by the future of computing. 

 

2.2 Challenges for the semi-conductor industry in terms of data deluge 

Needless to say, the semi-conductor industry is facing a number of challenges. We can 

identify four critical areas that need to be addressed to support the continued growth 

and development of advanced computing technologies: 

 

1. CMOS and DRAM PPAC (Power-Performance-Area-Cost): As technology scales, 

traditional CMOS and DRAM technologies are hitting limits in terms of their ability to 

improve power efficiency, performance, area (size), and cost simultaneously. These 

components are essential for many computing systems, but new innovations are 

required to enhance their PPAC metrics to keep up with growing computational 
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demands. Fig. 3 (left figure) shows that while traditionally the CPU single-thread 

performance has grown significantly during the early years, with an impressive rate of 

50% improvement per year up to around 2008, today this rate has dramatically slowed 

down to a mere 5% annual improvement. 

 

 
Fig.3: (left) CPU performance as function of the introduction year; data taken from M. Horowitz, F. 

Labonte, O. Shachan, K. Olukotun, L. Hammond, C. Batten. Additional data compiled by K. Rupp; 

(right) Design costs as function of CMOS technology node. Source: “AI Chips and why they matter”, 

S. Khan and A. Mann, 2020 

 

Next to that, the complexity of advanced CMOS technology nodes has led to increasing 

costs not only in developing and manufacturing the technology but also in designing 

in these nodes. As the semiconductor industry moved towards smaller nodes (7nm, 

5nm, etc.), the cost of designing chips has skyrocketed, as shown in the graph on the 

right. This raises the question: While we design these ICs for AI/ML applications, how 

far can AI help in addressing the design cost challenges? 

 

AI-driven tools have the potential to optimize various stages of chip design, such as 

automating parts of the design process, improving verification and testing, and 

enhancing predictive modeling for performance and thermal management. 

Additionally, AI could help in balancing the trade-offs between power, performance, 

and area (PPA), potentially allowing designers to create more efficient chips at lower 

costs. However, it's still an open question whether AI can substantially mitigate the 

rising costs and complexity. 
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Fig.4: SRAM size as function of introduction year. 

 

Historically, SRAM, a fundamental building block in logic technology, served as the 

benchmark for scaling. Each new technology node used to achieve a 0.7x linear scaling, 

translating to approximately 50% area reduction for SRAMs, which helped improve 

both performance and power efficiency (Fig. 4). 

 

However, around 2008, this consistent progression began to falter as gate-pitch 

scaling, a critical factor in transistor density improvements, started to slow down. In 

recent years, the slowdown has become even more pronounced, significantly affecting 

the ability to sustain previous rates of miniaturization and efficiency gains. As a result, 

alternative technologies and architectural innovations are increasingly being explored 

to maintain progress in the post-Moore’s law era. 

 

2. Memory Wall: The "memory wall" refers to the growing disparity between processor 

speed and memory performance. As compute power increases, the ability to access 

memory quickly enough becomes a bottleneck, slowing down overall system 

performance. Overcoming this requires innovations in memory architectures and 

technologies to ensure fast and efficient data transfer between memory and 

processors. 

 

3. Power Wall: The power wall represents the challenge of improving performance 

without a proportional increase in power consumption. As compute workloads grow, 

the energy required to power these systems becomes a limiting factor. Addressing this 

issue involves optimizing power efficiency, especially for applications like AI and 

machine learning that demand high computational throughput. 
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4. Sustainable Manufacturing: The environmental impact of manufacturing is an 

increasing concern. The IC manufacturing processes have a significant environmental 

impact, and as demand for integrated circuits continues to rise, the need for sustainable 

solutions grows [1]. The information technology sector is estimated to contribute up 

to 5% of total global emissions in terms of equivalent CO2 [2]. This includes the impact 

of all devices, from datacenters to mobile phones, as well as their use, manufacturing, 

and the energy consumed by networks. Although only a portion of this impact can be 

attributed to semiconductor manufacturing, it remains a resource-intensive process, 

consuming large amounts of energy, water, chemicals, and raw materials through a 

complex supply chain. 

 

While the Life Cycle Assessment (LCA) is a well-established method for evaluating the 

environmental impact of products, conducting an accurate LCA for integrated circuits 

is still challenging due to the scarcity of current information. Much of the data used 

today is outdated, leading to errors and variability in the LCA of electronic products, 

which complicates efforts to assess their environmental impact accurately. 

 

Closing this data gap requires collaboration across the industry. Stakeholders must 

work together to improve data collection, develop new measurement techniques, and 

establish common standards and frameworks for reporting environmental impact. Such 

efforts will promote transparency, accountability, and innovation, while ensuring that 

the industry contributes to addressing pressing environmental challenges. One of these 

platforms is imec.netzero [3]. This is a modeling platform which provides a detailed, 

bottom-up view of the environmental impact associated with various semiconductor 

manufacturing processes. By simulating the energy, water, mineral consumption, and 

greenhouse gas emissions across different technology nodes, imec.netzero helps the 

semiconductor industry identify and reduce high-impact processes, contributing to its 

goal of achieving net-zero emissions by 2040. 

 

In the remainder we will address some of the challenges mentioned in previous 

paragraphs in more detail, as well as their potential solutions. 

 

2.3 The ingredients for continued compute system scaling 

Despite the challenges mentioned before, future compute systems are expected to 

maintain exponential growth in performance, although the rate of CMOS scaling has 

slowed since around 2008. Despite this, advances will be driven by the introduction of 

new devices and materials for both logic and memory. Connectivity improvements, 

particularly through 3D integration and photonics, are already enhancing performance, 
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and upcoming technologies like 6G wireless are poised to play a crucial role in 

improving e.g. datacenter connectivity but might even be used at a finer grained scale. 

Additionally, new compute architectures will be essential to meet the growing diversity 

of applications. These will likely include SoC architectures enabled by CMOS 2.0 and 

specialized quantum accelerators for specific tasks, designed to overcome the 

limitations of traditional computing systems.  

 

 CMOS scaling but not as we (used to) know it 

Transistors will remain vital to general-purpose computing, despite the emergence of 

new paradigms like e.g. quantum computing. While quantum technology shows great 

promise for specific complex problems, it is unlikely to replace traditional computing 

entirely. The efficiencies gained through decades of optimizing CMOS technology will 

continue to be leveraged. 

 

Over the last decades, the industry has defied expectations through breakthroughs in 

EUV lithography, new materials, and device architectures like FinFETs and high-k 

dielectrics. These innovations have extended Moore’s law. Especially EUV has been 

crucial to extend the CMOS scaling roadmap. By the 2nm technology node, it is 

expected that the fourth generation of EUV patterning will be employed. However, 

pitches below 28nm will require multiple-patterned EUV steps, which add significantly 

to the complexity, cost and ecological footprint of the process. 

 

To address this challenge, high numerical aperture (NA) extreme ultraviolet (EUV) 

systems with a 0.55 NA are projected to become available around 2026-2027. This next-

generation EUV technology will allow some multi-patterned pitches to be reduced to 

single-exposure steps, simplifying the process and reducing costs while advancing 

scaling capabilities. 

 

Next to that, Fully-Depleted Silicon-On-Insulator (FDSOI) technologies can be seen as 

complementary to the FinFET-based track. It is a semiconductor technology that 

enables efficient performance and energy savings, making it highly suitable for low-

power applications. It is particularly valuable in mobile devices, automotive 

applications, IoT (Internet of Things) devices, and RF communications due to its ability 

to reduce power leakage and operate efficiently at low voltages. Additionally, FDSOI is 

known for providing excellent control over transistor behavior through back-biasing, 

which allows fine-tuning of performance and power trade-offs. 

 

The FDSOI roadmap includes continued development of smaller nodes, with current 

technologies around 22nm and 12nm, and future plans targeting 10nm and beyond. 

This progression ensures that the technology will remain competitive in power-

sensitive domains, offering a cost-effective alternative to FinFET in specific applications. 
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Going back to the FinFET-based CMOS scaling roadmap (Fig. 5), as feature sizes 

continue to shrink, the industry faces increasingly difficult physical and technical 

challenges. To overcome these, the transition from FinFET to nanosheets is underway 

for the 3/2nm technology node, with forksheet as the next step. This architecture allows 

for area scaling by reducing n-to-p spacing, thereby shrinking standard cell heights. 

 

 

Fig.5: Scaling roadmap logic transistor. Nomenclature: Nxx=xx nm node, Axx=xx Å node [4] 

 

Looking ahead, the semiconductor industry is exploring the complementary field-effect 

transistor (CFET) for post-1nm scaling. By vertically stacking n- and pMOS devices, CFET 

promises further optimization of channel width and drive current, offering another path 

for area scaling and potentially reducing cell heights to four tracks or less. 

 

While CFET offers significant potential, it is pushing the limits of materials and process 

tools. Many of the required technologies are still in early R&D stages, making large-

scale manufacturing of CFET devices a long-term prospect, likely more than a decade 

away. 

 

 New materials and device concepts 

While Si-based transistors have dominated electronics for decades, the future likely 

involves a variety of new switch types built from different materials and governed by 

alternative physical principles. Among these, 2D materials are emerging as one of the 

most promising areas of research, thanks to their exceptional properties such as high 

mobility, flexibility, and tunability.  

 

2D materials like tungsten disulphide (WS2) and hafnium disulphide (HfS2), part of the 

transition metal dichalcogenides (TMD) family, offer unique advantages in CMOS 

technology. Their atomic-thin layers enable conduction channels that can be scaled 

below 10nm, significantly reducing short channel effects while maintaining 

performance. Unlike the previous excitement surrounding III-V materials, which 

ultimately lost their edge over silicon at scaled dimensions, 2D materials maintain their 
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high mobility and lower dielectric constants at nanometer-scale dimensions, making 

them better suited for continued scaling beyond silicon’s limits. 

 

However, several challenges remain before 2D materials can be integrated into 

commercial transistors. Issues such as material growth quality, contact resistance, 

doping, and gate dielectric formation need to be resolved. Despite these obstacles, the 

use of 2D materials in nanosheet or CFET architectures appears highly likely, as their 

ultra-thin structures are ideal for stacking to improve drive current and reduce 

footprint.  

 

There are additional opportunities to integrate 2D materials earlier in the development 

process. For example, they could be implemented as power switches in the backend or 

on the wafer's backside, where performance requirements are less stringent. In the 

context of CMOS 2.0, 2D materials can also serve as a low-capacitance, low-drive logic 

layer for driving short interconnects, offering a practical solution before full-scale 

integration into more performance-critical applications. 

 

Another technology on the roadmap is the Dirac cold source FET. This concept 

leverages 2D materials to create a more energy-efficient transistor by reducing thermal 

excitations, offering significant power-saving advantages. While this technology is still 

in development, its potential to achieve near-ideal subthreshold swing makes it highly 

attractive for future low-power devices. 

 

 
Fig.6: Operation principle of the Dirac cold source FET. Taken from [5]. 

 

In addition to 2D materials, carbon nanotubes (CNTs) are also gaining renewed 

attention. CNTs possess excellent electrical properties, including high mobility and 

current-carrying capacity, making them ideal for high-performance transistors. 

However, challenges like the difficulty in growing and aligning uniform nanotubes have 

delayed their widespread adoption although significant progress has been made over 

the last decade. 
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In general, the pros of 2D materials and CNTs include their ability to operate efficiently 

at ultra-small scales, their high mobility, and their potential for low-power operation. 

On the downside, material growth, integration, and contact formation remain 

significant technical challenges that need to be addressed before these materials can 

replace or complement silicon in mainstream electronics. 

 

 CMOS 2.0 – The next generation of scaling? 

CMOS 2.0 represents a significant evolution in semiconductor technology, aiming to 

tackle the power, performance, and scaling limitations of traditional silicon-based 

CMOS as it reaches its physical boundaries. This new approach combines 

heterogeneous technologies, 3D transistor stacking, and advanced materials to 

enhance chip performance, efficiency, and scalability. The evolution from 

homogeneous platform (CMOS 1.0) to heterogeneous platform (CMOS 2.0) is shown 

in Fig. 7. 

 

 
Fig.7: Evolution from a homogeneous platform where CMOS was a one-device-fits-all technology to 

a finer-grained heterogeneous platform. 

 

One of the key innovations is heterogeneous integration, where various components 

like logic and memory are brought together on a single chip, eliminating inefficiencies 

and reducing power consumption. Additionally, 3D stacking allows for the vertical 

layering of transistors, increasing component density without expanding the chip’s 

physical size, which opens new possibilities for more powerful yet compact devices. 

Also, we will see more and more the use of the wafer and chip backside, going from 

implementing passive structures like backside power delivery connections to active 

devices. 

 

CMOS 2.0 also incorporates the use of new, often dissimilar materials as compared to 

Si, such as e.g. GaN for power management. Another exciting development is 

neuromorphic computing, which mimics the structure of the human brain, enabling 

more energy-efficient processing for applications like artificial intelligence and 

advanced computing tasks. These innovations make CMOS 2.0 crucial for addressing 
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the needs of next-generation technologies such as AI, IoT, and high-performance 

computing.  

 

In general, CMOS 2.0 offers a platform where advanced compute and advanced 

functionalization can coexist and complement each other. However, with a zoo of 

different devices, features and materials, a System-Technology-Co-Optimization 

(STCO) framework is required to optimize the performance of these complex systems 

[6]. 

 

2.4 Addressing the memory wall 

Among all the power consumption tasks in an Integrated Circuit (IC), data movement 

and storage are today known as the major ones, and consume much higher energy 

than that required to process the data, as illustrated in Fig.8 (800 times more energy 

for operand fetching). By moving away for the Von Neumann architecture, we can 

expect to reduce by 90% the energy consumption. Lots of efforts need to be done in 

that field. 

 

 
Fig.8: Part of the energy consumed in an IC, to compute or to store the data. Source: Bill Dally, “To 

ExaScale and Beyond”, 2010 

 

By comparing the performances (Computation Performance in GOPS versus the 

Computation efficiency in GOPS/W) between existing ICs and bio Systems like Honey 

Bee brain or Human brain, we clearly see that the ICs are well under the performance 

of the bio systems (Fig.9). 
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Fig.9: Comparison of the computing efficiency and the computing performance of existing 

Integrated circuits and biology systems. 
 

 How to mimic the Human Brain? 

Try to mimic those bio systems is thus the key to some big breakthrough in terms of 

Power Efficiency. The use of Back-End-Of-Line (BEOL) Memories is appearing to be a 

key enabler as they allow to mimic neuron networks, as illustrated in Fig.10. This 

examples is shown for PCRAM but can be extrapolated to any other types of Memories 

(MRAM, OxRAM, FeRAM,…). Key performances of the existing Non-Volatile Memories 

are summarized in Fig.11, with a comparison of the Flash Technology available widely 

in the Industry. 
 

 
Fig.10: Neuron network simulation using PCRAM network. 
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Fig.11: Comparison of the performance of the existing BEOL Memories. 

 

Human brain exhibits typical characteristics, like asynchronous communication, 

plasticity, sensing, 3D structure and learning during our entire life. It is essential to be 

able to reproduce those characteristics in the Integrated Circuit. This can be done, as 

shown in Fig.12, by using Spiking coding, re-configurability, smart sensors, dense 3D 

integration and new algorithms allowed by the use of new technologies. 
 

 
Fig.12: Characteristics of Human Brain with the corresponding feature for the mimic Integrated 

Circuit  

 

By utilizing available on-chip memories, including SRAM and embedded Non-Volatile 

BEOL memories, it is possible to shift from the traditional Von Neumann architecture 

towards Near-Memory Computing. Logic and arithmetic operations can now be 

redefined using these memory resources, effectively bringing memory closer to the 

logic. 

 

Resistive memories allow for further advancements by enabling In-Memory 

Computing, where memory units are directly involved in computation. This eliminates 

the energy consumption associated with data movement. 
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Unlike CMOS-based memories such as static or dynamic random access memories, 

which store one bit per unit cell, resistive memories can be programmed to 

intermediate states between their lowest and highest resistance values. This feature 

allows for the compact storage of synaptic weights in neural networks. Additionally, 

using fundamental laws of electric circuits, arrays of memristors can implement the 

core operation of deep learning—Multiply and Accumulate (MAC). In this case, the 

multiply operation is governed by Ohm’s law, while accumulation is performed 

according to Kirchhoff’s current law (Fig.13). 
 

 
Fig.13: Evolution from Von Neumann architectures towards Near Memory computing, by 

implementing logic and arithmetic operations with Memory technologies  

 

This concept has been successfully demonstrated on-chip, achieving high energy 

efficiency and performance in the tera operations per second range, with flexibility to 

support diverse models and accuracy comparable to software implementations. 

However, practical realization faces challenges due to memory variability, 

imperfections in analog CMOS circuits, and voltage drop effects. These challenges can 

be addressed through specialized programming schemes [7], circuit optimizations, or 

by combining memory arrays with emerging computing paradigms (see Fig. 14). 

 

Binarized neural networks represent one such paradigm, where both synaptic weights 

and neuronal activations are limited to binary values (+1 and −1). This reduces the 

need for multi-level programming and, in turn, minimizes variability. These networks 

are well-suited for various embedded memory technologies, such as RRAM, PCM, and 

MRAM. Recently, a binarized neural network was demonstrated based on filamentary 

resistive memories and powered by a miniature wide bandgap solar cell optimized for 

edge applications [8]. 
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Fig.14: Different approaches pushed for In-Memory-Computing Artificial Intelligence 

 

Another approach incorporates computational principles inspired by the brain into 

neuromorphic circuits and architectures. These circuits are naturally tolerant to 

variability, mirroring biological systems' ability to make accurate decisions despite 

operating on unreliable substrates with imprecise neurons and synapses. Unlike 

traditional artificial neural networks (ANNs), biological neurons display complex 

internal temporal dynamics and interact through sparse, event-driven signals (spikes). 

The brain also processes information hierarchically, at different temporal scales—from 

milliseconds at the synapse level to seconds at dendrites and even minutes to hours 

within the neural network. Replicating these multi-timescale processes within compact 

CMOS technology remains a significant challenge. A promising solution is to leverage 

novel nanodevices, such as resistive memories, which have demonstrated the capability 

to implement varying time constants across synapses [9], neurons [10], dendritic arbors 

[11], and the broader neural network [12]. 

 

A third approach embraces the inherent randomness of memory devices, using their 

properties to compute efficient Bayesian algorithms. Bayesian neural networks offer a 

major advantage in sensory processing tasks, as they handle limited data effectively 

and estimate uncertainty with precision. In these networks, synaptic weights are not 

fixed values but are instead modeled as probability distributions. The natural variability 

in filamentary resistive memories and phase-change memories can represent these 

distributions as multi-level random variables [13], [14]. 

 

A fourth approach involves Ising networks, which utilize binary stochastic spintronic 

devices to generate stochastic bit streams, known as probabilistic bits or p-bits. While 

Magnetic Tunnel Junctions (the fundamental components of MRAM) may not offer the 

same degree of synaptic granularity as resistive memories, they excel in autonomous 

binary sequential sampling. This makes them particularly well-suited for physically 

implementing interacting binary stochastic neurons in Ising machines [15]. 
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Despite significant progress in low-power AI using in-memory computing devices, 

current implementations are still limited to pre-programmed inference hardware. The 

next challenge is to develop adaptive learning capabilities that allow systems to handle 

real-world dynamics more effectively. Continual learning, which enables the 

accumulation of knowledge without catastrophic forgetting, is especially valuable for 

edge devices that frequently interact with environmental data. However, implementing 

edge AI remains difficult with current memory technologies, particularly when 

balancing the conflicting requirements for training and inference under strict energy 

constraints. 

 

Previous approaches for edge models small enough to fit on-chip have used separate 

SRAM and RRAM macros for training and inference, respectively. This design results in 

area overhead and delays due to data transfer. To address this, the concept of "hybrid 

memory" was introduce which integrates two distinct memory technologies at the 

device level with fine granularity to enable on-chip learning. 

 

The monolithic integration of two on-chip memory technologies—oxide 

semiconductor gain cells and Resistive RAM— was demonstrated into a compact joint 

memory cell on a Si CMOS platform [16]. Additionally, a unified memory stack was 

proposed based on silicon-doped hafnium oxide and a titanium scavenging layer. This 

stack functions as both a memristor and a ferroelectric capacitor and is integrated into 

the back-end-of-line (BEOL) of a standard CMOS process. This technology offers an 

efficient and cost-effective solution for AI devices with learning capabilities, requiring 

no additional masks and only a few extra process steps [17-18]. 

 

Finally, our vision is that hardware innovation will continue to meet the ever-increasing 

demand for computing power through 3D integration technologies. This technology 

enables the vertical stacking of logic, memory, and sensing components using 

unconventional fabrication processes. It can also be employed to increase on-chip 

storage capacity, allowing massive neural network weights to be fully hosted on-chip. 

Additionally, 3D integration reduces latency and power consumption due to shorter 

interconnects, improves bandwidth between stacked layers by enabling multiple 

connections, and facilitates the integration of heterogeneous layers, each optimized 

for a specific function [19]. 
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 3D and Chiplet approach to enable heterogeneous integration for Power 

Efficiency 

It is now well established that the combination of different kinds of integrated circuits 

by 2.5 and 3D technologies is a way to combine the best of different technologies and 

the miniaturization to provide higher performance, flexibility and modularity with 

drastic energy efficiency benefits.  

 

Instead of using a large monolithic die, that can suffer from a lower yield or increased 

parasitics due to a larger distance between CPU and Memories, it is well understood 

that moving to a chiplet concept is key. The chiplet approach is a disagregation of a 

large IC into smaller ICs with similar functionalities at smaller scale, approach (see 

Fig.15) that can significantly improve the overall performance. 
 

 
Fig.15: Disaggregation of a monolithic chip into several chiplets, re-aggregated together using 3D 

integration. 

 

This chiplet approach is clearly enabled by advanced 3D technological bricks (high 

density through silicon vias, wafer-to-wafer and die-to-wafer direct hybrid bonding, 3D 

sequential integration… that are illustrated on Fig.16. 

 

This toolbox provides different techniques, not necessarily equivalent in terms of 

density of connections. Among those techniques, the Hybrid Bonding Technology 

(based on Cu/SiO2 structures) appears to be the most promising one as it allows an 

interconnection pitch in the range of 1-2µm for the most advanced research groups 

(illustrated on Figs. 17 & 18). 
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Fig.16: 3D integration technological toolbox used for chiplet approach 

 

 

 
Fig.17: Various options of Hybrid Bonding Technologies: Wafer to Wafer, Die to Wafer with or 

without the Self-Assembly technique. 
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Fig.18: Alignment performance of Die to Wafer Hybrid bonding technology. Comparison of Industry 

and R&D data.  

 

2.5 EU and non EU actors in the field of advanced Computing 

Technologies 

It is very important to identify the fields where EU is active in terms of Research and 

Manufacturing. Preliminary radar plots have been elaborated for technologies on 

Advanced Computation during the ICOS project with the intent to highlight where EU 

is strong and where strong improvements are needed. Same plots have been done for 

US and Asia. Those plots are inserted in Fig. 19 to 21. 
 

 
Fig.19: Radar plot highlighting the positioning of EU actors in the field of Advanced Computing.  
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Fig.20: Radar plot highlighting the positioning of 

US actors in the field of Advanced Computing.  

Fig.21: Radar plot highlighting the positioning of 

Asian actors in the field of Advanced 

Computing. 

 

We can mention that EU is very strong in R&D in all the domains of Advanced 

Computing. This is mainly due to its strong RTOs (in 200 and 300mm) and its large 

portfolio of Universities in the different countries.  

 

Regarding the manufacturing, we notice a weak part in the field of advanced CMOS 

technologies (with both FEOL and BEOL technologies), as well as in the field of 

advanced materials. For all the other topics (Memories, Heterogeneous integration, 

advanced patterning, Quantum computing), EU is quite well positioned. 

 

US and Asia have similar profiles, for both R&D and Manufacturing. It is interesting to 

note that they both look stronger in manufacturing than in R&D. This might be a 

consequence of the strong positioning of their key players in the field of 

Semiconductors (Foundries, Fabless) that are doing a lot of R&D internally. 

3 Conclusion 

The "Report on Future Technologies for Advanced Computation" underscores the vital 

importance of international cooperation in the semiconductor sector, particularly in the 

context of emerging technologies that promise to drive significant advancements in 

various applications of computational systems. The latter include artificial intelligence 

and machine learning in graphic processing units, augmented and virtual reality 

devices, advanced driver-assistance systems and their advancement for autonomous 

vehicles, edge AI for the Internet of Things. Each of these emerging applications 

requires specialized solutions tailored to its specific performance, power, and latency 

requirements.  

The underpinning diversification of ‘advanced compute’ needs implies that one-size-

fits-all devices and architectures based on CMOS technology will no longer suffice. This 
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calls for an interconnected global landscape where fostering collaboration among 

nations, research institutions, and industry leaders is essential to accelerate 

technological innovation and strengthen the semiconductor value chains. This 

alignment is not only crucial for meeting the objectives of the EU Chips Act but also for 

ensuring that Europe maintains its competitive edge in the global market. 

Besides the optimisation of Power-Performance-Area-Cost (PPAC) for CMOS and 

DRAM, key research and development has emerged to address the disparity between 

processor speed and memory performance (“memory wall”), the improved 

performance without a proportional increase in power consumption (“power wall”) and 

sustainable manufacturing. 

Transistors will remain vital to general-purpose computing, despite the emergence of 

new paradigms. For their continuous scaling several architectures will continue to 

develop according to the various roadmaps. These include FinFETs, nanosheets, 

forksheets, CFET and FDSOI. To this end, advancements will also be required in key 

enabling technologies such as high-NA EUV for small feature (~nm) patterning and 

heterogeneous integration for increasing component density without expanding the 

chip’s physical size. Further advances will be driven by the introduction of new materials 

(e.g., transition metal dichalcogenides, carbon nanotubes, oxide semiconductors and 

ferroics) and devices (e.g., steep subthreshold swing transistors and non-volatile 

memories such as PCRAM, MRAM, OxRAM, FeRAM). 

New computational paradigms will be essential to address the power and memory 

walls as well as the growing diversity of applications. In the near future, BEOL memories 

will enable brain-inspired architectures, e.g., near-memory, in-memory and 

neuromorphic computing. In the longer term, quantum computing accelerators may 

be used to overcome the limitations of traditional computing systems in a large family 

of optimisation problems. For such architectures and further performance 

improvements (e.g., in connectivity) heterogeneous integration technologies will also 

be a key enabler. 

 

To summarise, key Advanced Computation‘ topics for EU to be active are: 

• Classical’ Logic Scaling Roadmap beyond FinFET technology that extends 

devices structures through sub nm nodes (e.g., GAA and CFET architectures)  

• Exploration of ‘Fully Depleted SOI’ technology for Power Efficient Analog and RF 

applications 

• Exploration of alternative channel materials (e.g., 2D materials) 

• Extension of the scaling of BEOL technologies, through the use of Ru, Airgap or 

Graphene-based metallization, by reducing the associated RC network  
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• Added BEOL functionality through the introduction of new materials such as 2D, 

oxide semiconductors and ferroics 

• Exploration of the use of BEOL Non-Volatile Memories (using for example 

resistive RAM such as FeRAM, MRAM, PCRAM) for Power Efficient 

Neuromorphic-based architectures applied e.g., to embedded systems  

• Photonic chips for optical interconnects and quantum information processing  

• Demonstration of the capability of the ‘Buried Power Rail delivery’ to decongest 

the interconnection density that is becoming the most limiting factor for the 

scaling at 2nm and below  

• Enablement of the High-NA EUV lithography for the patterning of 2nm nodes 

and beyond 

• Usage of 3D integration to desegregate the classical large area chips into 

chiplets that will be much more power efficient when reconstruct using 3D 

integration design flow and associated toolbox. 

The EU is very strong in R&D in all the domains of advanced computing and the 

findings of this report illuminate semiconductor technologies for advanced computing 

systems that may benefit from international collaboration. By leveraging shared 

knowledge and resources, stakeholders can address existing challenges, drive 

innovation, and create a sustainable future in the semiconductor industry. 

 
 

References 

[1] M. G. Bardon. “DTCO including Sustainability: Power-Performance-Area-Cost-

Environmental score (PPACE) Analysis for Logic Technologies”, IEDM, 2020. 

 

[2] U. Gupta et al., “Chasing Carbon: The Elusive Environmental Footprint of 

Computing”, 2021 IEEE International Symp. on High Performance Computer Arch. 

(HPCA), 2021, pp. 854-867. 

[3] https://netzero.imec-int.com/ 

[4] N. Collaert, "Advancements in IC Technologies: A look toward the future," in IEEE 

Solid-State Circuits Magazine, vol. 15, no. 3, pp. 80-86, 2023. 

[5] https://www.mit.edu/~pengw/research/csfet/ 

[6] “Unlocking system scaling bottlenecks with STCO”, interview Julien Ryckaert, 

https://www.imec-int.com/en/articles/unlocking-system-scaling-bottlenecks-system-

technology-co-optimization 

[7] E. Esmanhotto et al., “Experimental Demonstration of Multilevel Resistive 

Random Access Memory Programming for up to Two Months Stable Neural Networks 

Inference Accuracy,” Adv. Intell. Syst., vol. 4, no. 11, p. 2200145, Nov. 2022, doi: 

10.1002/aisy.202200145. 

https://netzero.imec-int.com/
https://www.mit.edu/~pengw/research/csfet/
https://www.imec-int.com/en/articles/unlocking-system-scaling-bottlenecks-system-technology-co-optimization
https://www.imec-int.com/en/articles/unlocking-system-scaling-bottlenecks-system-technology-co-optimization


 

 

 

Title D3.1: Report on Future Technologies for Advanced 

Computation 

Author O. Faynot Version V1.5 

Reference  D3.1 Date 04/10/2024 

 

 

 

27 

This project has received funding (2023 – 2025) from the European Union’s 

Horizon Europe research and innovation programme under GA No 101092562. 

 [8] F. Jebali et al., “Powering AI at the edge: A robust, memristor-based binarized 

neural network with near-memory computing and miniaturized solar cell,” Nat. 

Commun., vol. 15, no. 1, p. 741, Jan. 2024, doi: 10.1038/s41467-024-44766-6. 

[9] F. Moro et al., “Neuromorphic object localization using resistive memories and 

ultrasonic transducers,” Nat. Commun., vol. 13, no. 1, p. 3506, Jun. 2022, doi: 

10.1038/s41467-022-31157-y. 

[10] M. Payvand et al., “Self-organization of an inhomogeneous memristive hardware 

for sequence learning,” Nat. Commun., vol. 13, no. 1, p. 5793, Oct. 2022, doi: 

10.1038/s41467-022-33476-6. 

[11] S. D’Agostino et al., “DenRAM: neuromorphic dendritic architecture with RRAM 

for efficient temporal processing with delays,” Nat. Commun., vol. 15, no. 1, p. 3446, 

Apr. 2024, doi: 10.1038/s41467-024-47764-w. 

[12] T. Dalgaty et al., “Mosaic: in-memory computing and routing for small-world 

spike-based neuromorphic systems,” Nat. Commun., vol. 15, no. 1, p. 142, Jan. 2024, 

doi: 10.1038/s41467-023-44365-x. 

[13] D. Bonnet et al., “Bringing uncertainty quantification to the extreme-edge with 

memristor-based Bayesian neural networks,” Nat. Commun., vol. 14, no. 1, p. 7530, Nov. 

2023, doi: 10.1038/s41467-023-43317-9. 

[14] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and E. Vianello, “In 

situ learning using intrinsic memristor variability via Markov chain Monte Carlo 

sampling,” Nat. Electron., vol. 4, no. 2, pp. 151–161, Jan. 2021, doi: 10.1038/s41928-020-

00523-3. 

[15] K. Danouchi et al., “Designing networks of resistively-coupled stochastic 

Magnetic Tunnel Junctions for energy-based optimum search,” in 2023 International 

Electron Devices Meeting (IEDM), San Francisco, CA, USA: IEEE, Dec. 2023. 

[16] Shuhan Liu et al., “Edge Continual Training and Inference with RRAM-Gain Cell 

Memory Integrated on Si CMOS,” to be presented at 2024 International Electron Devices 

Meeting (IEDM), San Francisco, CA, USA: IEEE, Dec. 2024. 

[17] M. Martemucci et al., “Hybrid FeRAM/RRAM synapse circuit for on-chip 

inference and learning at the edge,” in 2023 International Electron Devices Meeting 

(IEDM), San Francisco, CA, USA: IEEE, Dec. 2023. 

[18] M. Martemucci et al., “Unified Ferroelectric/Memristive Memory for Neural 

Network Inference and Training,” under review at Nat. Electron. 



 

 

 

Title D3.1: Report on Future Technologies for Advanced 

Computation 

Author O. Faynot Version V1.5 

Reference  D3.1 Date 04/10/2024 

 

 

 

28 

This project has received funding (2023 – 2025) from the European Union’s 

Horizon Europe research and innovation programme under GA No 101092562. 

[19] E. Vianello and M. Payvand, “Scaling neuromorphic systems with 3D 

technologies,” Nat. Electron., vol. 7, pp. 419–421, June 2024, doi: 

https://doi.org/10.1038/s41928-024-01188-y. 

 


