

EU – India Joint Researchers Workshop on Semiconductors

▶ 9 October 2024

Sustainability in information and communication technologies

Jean-Pierre Raskin, PhD

Professor at Louvain School of Engineering RF-SOI group, ICTEAM, Université catholique de Louvain, Belgium jean-pierre.raskin@uclouvain.be

UCLouvain

EU – INDIA - Joint Researchers Workshop on Semiconductors Jean-Pierre RASKIN

Brussels, Belgium October 9th 2024

Nanoelectronics – a fantastic world

Team: 30 researchers

RF SOI in all wireless systems

Factors explaining the environmental impact of ICT

Moore's Law – an economic law

Number of transistors doubles approximately every 18 months at a fixed low production cost

Miniaturization – Pressure on materials

11 iydrog 1 1 Н lithium 3 beryllium 4 2 Li Be 6.041/20 0.012102(2) sodium 11 12 3 Na Ma 22.989770(2) ^{potassium} 19 4 Κ Ca 39.0963(rubidium 37 5 Rb Sr 85.4678(3) caesium 55 6 Cs Ba 132.90545(2) francium 87 radium 88 7 Fr Ra 226.0254

	1080's		Ш	IV	V	VI	VII	0
	1900 5							helium 2
	1990's		boron	carbon	nitrogen	oxygen	fluorine	4.002602(2)
			₅ B	⁶ C	⁷ N	8 O	9 F	¹⁰ Ne
	2000's		10.811(7) aluminium 1.3	12.0107(8) silicon 14	14.00574(7) phosphorus 15	15.9994(3) sulfur 16	18.9984032(5) chlorine 17	20.1797(6) argon 18
		-	AI 26.981538(2)	Si 28.0855(3)	P 30.973761(2)	S 32.095(6)	CI 35.4527(9)	Ar
scandium titanium vanadium chromium manganese 21 22 23 24 25	iron cobalt 26 27	nickel copper zinc 28 29 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
	Fe Co 55 845(2) 58 933200(9)	Ni Cu Zn 55 554(3) 55 35(2)	Ga 69.723(1)	Ge 72.61(2)	AS 74.92160(2)	Se 78.95(3)	Br 79.904(1)	83.80(1)
yttrium zirconium niobium motybdenum technetium 439 40 41 42 43	ruthenium 44 45	palladium silver cadmium 46 47 48	indium 49	tin 50	antimony 51	tellurium 52	icdine 53	xenon 54
Y Zr Nb Mo Tc [16 0005]		Pd Ag Cd 112411(5)	114.818(3)	Sn 118.710(7)	Sb 121.760(1)	127.60(3)	125.90447(3)	131.29(2)
lanthanum hafnium tantalum tungsten rhenium 57 72 73 74 75	osmium iridium 76 77	platinumgoldmercury787980	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
La Hf Ta W Re 155 1955(2) 175 49(2) 100 47(1)	OS Ir 190 23(3) 192 217(3)	Pt Au Hg 200 50(3)	204.3833(2)	Pb 207.2(1)	Bi 208.96038(2)	P0 [208.9624]	At [209.9871]	Rn [222.0176]
								F
cerium praseodymium nedodymium promethium samarium 61 62	europium gadolinium 63 64	terbium dysprosium holmium 65 66 67	erbium 68	thulium 69	ytterbium 70	lutetium 71		
Ce Pr Nd Pm Sm 160 30705(2) 144 24(3) [144 9127] 50.36(3)	EU 151.964(1) GO 157.25(3)	10 UY 168 92534(2) 162 50(3) 164 93032(2)	167.25(3)	168.93421(2)	Y D 173.04(3)	174.967(1)		
thorium protactinium uranium neptunium plutonium 90 91 92 93 94	americium 95 96	berkelium californium einsteinium 97 98 99	^{fermium} 100	mendelevium 101	nobelium 102	lawrencium 103		
Th Pa U Np Pu 235 203(1) 231 03588(2) 238 228(2) 238 228(2)	Am Cm [243.0614] [247.0703]	Bk Cf Es	Fm [257.0961]	1258.0984j	NO [259.1011]	Lr [282.110]		

Always more extraction, always more materials

[[]Prof. M. Ashby, Cambridge Univ.]

Always more extraction, always more energy

Jean-Pierre RASKIN | UCLouvain

Much more than climate change

- The scientists have demonstrated the coupling between the way of living and the health of the planet
- Several planetary limits have been already transgressed
- Not only CO_{2eq} ... 16 impact indicators addressing air, water and soil emissions and resource use
- There is an urgent need to move to responsible innovation

On-going actions to reduce the footprint of ICT

Life Cycle Assessment (LCA)

LCA studies (ISO 14040) the potential impacts on the planet ecosystems and human health from raw materials acquisition through production, use and disposal of a product or service.

Reduce energy and water used

Primary Energy Demand

Jean-Pierre RASKIN | UCLouvain

Water consumption

Recovery and Recycle of metals

- Evaporation or sputtering of metals
- Recovery and recycling techniques are currently tested
- Most of the metal is deposited over the chamber walls (>80%)
- The target is replaced while material remains

Good for the environment, good for the economic profit

New chemistry in R&D

To fulfill upcoming legislations

For stripping, wet etching, cleaning, decontamination

Projet i-Demo CLEAN Contact: Thierry Chevolleau, CEA-Leti Evaluation of bio-sourced (chitosan) water-soluble resists, avoiding solvent and alkali-based developers

New engineered substrates

[B. Vanhouche *et al., Electronics Goes Green 2024,* Berlin, Germany, June 17-20, 2024]

Global Warming Potential and Abiotic Depletion Potential

European

Commission

GENESIS – EU project

- 60 partners - 12 countries

- A sustainable semiconductor industry must be the concern of everybody
- Not a source of competition
- COLLABORATION IS KEY

GENESIS project ambitious targets:

- 50% reduction in hazardous materials
- 30% decrease in emissions and waste,
- and improved recycling of rare materials

We must implement solutions for more circularity

The shorter the loop is, the better is ... Reuse, Repair, Repurpose, ...

EU – INDIA – Joint Researchers Workshop on Semiconductors Jean-Pierre RASKIN | UCLouvain

International Coope

Reuse, Repair, Repurposing

- Battery control and space location of electric scooters
- Monitoring of cryogenic batteries for solar energy storage

[N. Brusselmans *et al., Electronics Goes Green 2024,* Berlin, Germany, June 17-20, 2024]

Conclusions

- Use LCA to reveal trends in early stage of a technology development and consider the whole life-cycle of a product or service
- However, **complexity** in fab, supply chain and IP make **data collection a challenge**
- LCA is not sufficient, study **rebound effects** and consumer behaviour!
- Need for transversal collaborations & a holistic approach (industry, academy, regulations, citizens, social sciences) along the entire life of the product or the service
- Our techno-liberal societies encourage us to develop creative destruction (Joseph Schumpeter)
- We should start thinking about appropriate and appropriable technologies

Acknowledgements

- Chair of Excellence Carnot at CEA-Leti
- Researchers of the RF-SOI group
- Prof. David Bol, Dr. Sébastien Toussaint, Dr. Grégoire Le Brun, Mr. Nicolas Brusselmans, Mrs. Margo Hauwaert, Mrs. Justine Lebrun, Prof. Ignace Adant

EU – INDIA – Joint Researchers Workshop on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu