Advanced Materials for next-generation Semiconductor technology

Rajeev Ahuja, Director Indian Institute of Technology Ropar

Advanced Materials for next-generation Semiconductor technology

 $C\Box$

Rajeev Ahuja Uppsala Univ.

Sweden

Condensed Matter Theory Group

UPPSALA UNIVERSITET **Theory Group** As an institute of national importance, IIT Ropar embodies the original vision behind establishment of the IITs and continues to develop scientific and technological capabilities for nation-building

IIT Ropar was established in 2008 !

One of the youngest IITs and growing very fast !

Brief history of IITs

Journey of IIT Ropar

Indian Institute of Technology Ropar

Academic Programs

B. TECH.

Civil Engineering Computer Science and Engineering Electrical Engineering Mechanical Engineering Engineering Physics Chemical Engineering Metallurgical & Materials Engineering Maths and Computing

Ph. D.

Ph.D. in all the departments & centers

M.TECH.

Computer Science Engineering CSE (Artificial Intelligence) Power Engineering Communication & Signal Processing Microelectronics & VLSI Design Mechanics & Design Manufacturing Engineering Thermal Engineering Civil Engineering Biomedical Engineering Chemical Engineering M.Sc.

> **Physics Chemistry Mathematics**

M.S. (Research) Electrical Engineering Computer Science and Engineering

FOCUS…….

SUSTAINABLE GALS

Materials research for energy applications

• Power Generation

- Photovoltaics for solar power
- Wind Energy
- Fuel Cells
- Thermoelectrics for power generation from waste heat recovery

• Transmission

– Superconducting power cables for congested areas, long-distance power from remote sits of solar & wind sources

• Transformation

- Superconducting Transformers
- Consumption
	- Solid State Lighting
- Storage
	- Batteries, Supercapacitors, Superconducting magnetic energy storage
- Security/Protection
	- Superconducting Fault current limiters

Advanced materials are useful all over the Energy landscape! They act in the framework of sustainable development

Semiconductor Spintronics: why do we need new materials?

The number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit (1965, Gordon Moore, co-founder of Intel)

Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months

Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

Dilute ferromagnetic semiconductors: what are they?

Electronics

- **charge to process information**
- **spin to store information**

\Rightarrow Spintronics

- **add spin degree of freedom to charge-based electronics**
- **use spin alone as information carrier**
	- **Features**

Heavily transition metal doped semiconductor (III-V, II-VI, IV) must be ferromagnetic at and above room temperature ●**as similar as possible to a semiconductor**

Easily integrated in a semiconductor device technology

Advantages

●**non-volatility**

●**increased data processing speed**

●**decreased electric power consumption**

Potential applications

●**spin LEDS** ●**non-volatile memory** ●**quantum computing**

Problems

●**TM cluster, precipitates**

efficient spin injection: requires smooth interfaces

long spin lifetime: spin must stay aligned long time to be useful

Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO

PARMANAND SHARMA¹⁺, AMITA GUPTA¹, K.V. RAO*1, FRANK J. OWENS², RENU SHARMA³, RAJEEV AHUJA⁴, J. M. OSORIO GUILLEN⁴, BÖRJE JOHANSSON^{4,5} AND G. A. GEHRING⁶

¹Department of Materials Science-Tmfy-MSE, Royal Institute of Technology, SE 10044 Stockholm, Sweden [†]Currently at: Institute of Materials Research, Tohoku University, Sendai, 980-8577 Japan ²Armament Research, Development and Engg Ctr, Picatinny, New Jersey 07806, USA ³Center for Solid State Sciences, Arizona State University, Tampe, Arizona 85287-1704, USA ⁴Condensed Matter Theory Group, Department of Physics, University of Uppsala, Box 530, SE 75121 Uppsala, Sweden ⁵Applied Materials Physics, Department of Materials Science, Royal Institute of Technology, SE 10044 Stockholm, Sweden ⁶Department of Physics and Astronomy, University of Sheffield, Sheffield S37RH, UK *e-mail: rao@kth.se

Nature Materials **2, 673–677**

RSC Adv., 2023,13, 33336-33375

Graphene-like emerging 2D materials:

RSC Adv., 2023,13, 33336-33375

- \blacksquare Power density: $2mWm^{-2}$
- Energy conversion: 5.08%

Research in semiconductor and future goals Indian Institute of Technology Ropar

• Academic courses are aligned with Semiconductor Missions, Gov. of India

- **State-of-the-art research facilities**
- Research training of the faculty members in diverse area of semiconductors fabrication, TRL-4 and beyond

• Departments involved: Electrical, Physics, Mechanical and Materials Engineering.

Need of the hour

- Semiconductors is a focus area from both academic and industrial areas and is a mission for Government of India
	- ISM aims at establishing Indian semiconductor leadership and onboarding
- The AI and Quantum missions will further bolter activities in this area due to greater impetus on innovative hardware design for AI powered systems
- Acute shortage of skilled workforce in semiconductors in India
- IIT can play a pivotal role in filling the gap in workforce development in partnership with government (eg. SCL Mohali) and/or private industry
- We aim to develop an industry-academic framework for system driven design and aggregation, which is clearly lacking in India.

Micro-electronic devices and applications

8.5 **This** work ST-FMR armonic Hall $\frac{1}{\sqrt{9}}$ $\frac{8}{7.5}$ $= 2$ $\times 10^5$ $H = 300$ mT Fe Co Ni Ni₈₀Fe₂₀CMG 2.4 3.2 4.0 I_{dc} (mA) $MC₂$

Spin Hall nano-oscillators (SHNOs) Spin Hall conductivity and auto-oscillation in **SHNOs**

Experimental demonstration of MTJ-based computational random-access memory Neuromorphic computing using 2D array of SHNOs

1000

4.8

npj Unconv. Comput. 1, 3 (2024) Nat. Nanotechnol. **15**, 47–52 (2020)

Ongoing project from MEITY-NSF joint consortium

Research activity: Semiconductors for space

Small **2024**, 2309277 | ACS Photonics **2018**, 5, 2391 | Adv. Opt. Mater. **2020**, 8, 2000212 | Appl. Phys. Lett. **2024**, 124, 151601

Research goals: Semiconductors for future

Nearly 30% of all electrical energy is transferred through power electronics and expected to reach up to 80% in upcoming decades

2D materials on wafer scale growth and device fabrication

Surfaces and Interfaces **2024**, 46, 103937 | ACS Sens. **2018**, 3, 5, 998 | Appl. Phys. Lett. **2017**, 111, 093102

vdW semiconducting materials, heterostructures, and nanoscale devices for energy-efficient micro-electronic applications

Crystal and Epitaxial Thin Film Growth, and Computation Heterostructure design: experiment and computation

Phys. Rev. B **109**, 134507

Thin film growth Phys. Rev. B **96**, 094404 (2017); Appl. Phys. Lett. **112**, 052403 (2018)

TaIrTe₄/Ni₈₀Fe₂₀

First-Principles Analysis of TMD and Edge-Passivated AGNRs for Nano-Interconnects

Transmission spectrum for 8-AGNR configurations at zero bias.

[REF] V. K. Nishad, A. K. Nishad, B. K. Kaushik and Rohit Sharma, "First-Principle Analysis of Transition Metal Edge-Passivated Armchair Graphene Nanoribbons for Nanoscale Interconnects," in *IEEE Transactions on Nanotechnology*, vol. 20, pp. 92-98, 2021.

Edge-passivation by **transition metal** atoms in single layer (armchair graphene nanoribbons)AGNRs, that offer significantly lower resistance, can be seen as a promising technique for interconnect a

I-V characteristics of 8-AGNR configurations.

Cross-section of X-AGNR-X interconnects embedded in a dielectric

Copper Graphene Hybrid Interconnects

Surface scattering

Effective resistivity of Cu hybrid interconnect

$$
\frac{1}{R_{eq}} = \frac{1}{R_{Cu}} + \frac{1}{R_B}
$$

[REF] R Kumar and R Sharma, "A Temperature and Dielectric Roughness-Aware Matrix Rational Approximation Model for the Reliability Assessment of Copper– Graphene Hybrid On-Chip Interconnects," in *IEEE Trans. on Components, Packaging and Manufacturing Technology*, 2020.

Resistivity for different barrier layers at 22, 13, and 7

Atom-to-Circuit Simulation for 2DM Beyond MoS₂

Fig.1: I_{ON} of n-FET Vs I_{ON} of p-FET in double **gate geometry.**

Fig. 2: Power vs frequency of 2DM-based 6T SRAM Cell at V_{DD} =0.5 V.

Two-dimensional (2D) materials, including PbS, GeTe, Ti₂N₂Cl₂, HfS₂, and WS₂, have demonstrated excellent switching performance, surpassing that of their silicon counterparts. Ref: [1] A. Rawat and B. Rawat, IEEE TED, 71, 6, 2024

[2] A. Rawat, et al. IEEE TED, 68,7,2021

Horizontal Vs Vertical MoS² for Next-Generation Memristor

Figure 3: FESEM image of (a) CVD grown MoS, nanoflakes, (b) fabricated 2-D MoS, Memristor (c) I-V **characteristics for 20 cycles, (d) endurance test, (e) long-term potentiation (LTP) and depression (LTD) characteristics, and (f) accuracy with MoS² synapse in neural network.**

Ref: B. Rawat et al., IEEE JED, 2024 (Accepted).

Vertical Aligned MoS² for RT Gas Sensors

Figure 2: FESEM image of (a) CVD grown VA-MoS₂ nanoflakes, and (b) average size ~20 nm ZnO- NPs and (c) ~200 nm **Fe2O³ supttered decoration over VA-MoS² .**

Figure 2: (a) VA-MoS₂-ZnO sensor in presence of 5-50 ppm of NH₃, (b) MoS₂-Fe₂O₃ sensor in presence of the 0.1-50 **ppm of SO² ., and (C) selectivity of MoS² -ZnO and MoS² -Fe2O³ sensors.**

Ref: B. Rawat et al., ACS Applied Electronics Materials , 2024, 6,4.

Thank you

Indian Institute of *Technology Robert*

The Feur

RM TAVES

ATMYS \$400

ANNEHING

作品の子を現実し

KGI

BANKSYON