

EU – India Joint Researchers Workshop on Semiconductors

▶ 9 October 2024

Bio-based materials and processes for PCBs: an example of pathway for sustainable micro-nanoelectronics?

Pascal XAVIER Full Professor at CROMA – Grenoble Alps University

Brussels, Belgium October 9th 2024 EU – INDIA - Joint Researchers Workshop on Semiconductors Name

 \odot

□ Energy consumption: climate change

correlation / causality

□ Non-renewable resources consumption: sustainability

□ Electronics sector contribution

- Carbon emissions: ~4% of global emissions, mainly due to the fabrication phase (low power electronics) or use phase (power electronics)
 Projected electronic waste generation worldwide from 2019 to 2030 (in
 - □ increase due to IoT

Ecotoxicity on water

- **TSMC:** \div by 7 in the last decade, but volume +6%
- \Box SOITEC: \div by 2 in the same period, volume ~ constant

Economical risks

□ Shortages

Price volatility

Protectionism and lack of cooperation

□ Sustainability

Capital stock model

❑ Weak sustainability: a classical (but distorted) vision, everyday job of engineers → rebound effect!

Capital stock model

Strong sustainability: losses are not recoverable

Weak sustainability (Business As Usual): rebound effects, limits to growth...

Strong sustainability (need for a transdisciplinary approach): maintain an acceptable standard of living

How can you reduce the environmental impact of an electronic object?

Product Lifecycle

How can you reduce the environmental impact of an electronic object?

- 1. Refuse (obvious...)
- 2. Rethink (eco-design)
- 3. Reduce (quantities masses, volumes)
- 4. Reuse (second-hand)
- 5. Repair
- 6. Refurbish (renew)
- 7. Remanufacture (a new one from several)
- 8. Repurpose (other function)
- 9. Recycle (materials)
- 10. Recover (energy)

Different approaches

- □ For digital, RF and low power signal electronics
 - production phase: new materials & processes
 - □ usage phase: **ultra low power** devices
 - end-of-life phase: recycling
- □ For power electronics
 - □ production phase: new **system assemblies**
 - usage phase: higher **yields**
 - end-of-life phase: reuse (modularity & standardization)

□ PCB contribution in an electronic device environmental footprint

depends on the application (DOI:10.30420/566091368)

- □ 5% (a small board with a SoC or WiFi chip for instance)
- □ up to 20% (a low-density board with a few ICs)

□ Bio-sourced PCBs: -30% on environmental footprint of the fabrication phase (2011 – KUL)

□ Bio-sourced \neq Biodegradable !

- \rightarrow protection layer!
- □ Sometimes edible...

According to market experts, at least 20% of PCBs should be bio-based by 2033

Bio-sourced PCBs: state of the art

□ "FR4 like" rigid substrates (low TRL) with agricultural by-products

Epoxy + Lignin + BFR (2001 – IBM, 2005 - Fraunhofer)

Epoxy + Lin + melamine (2008 – UC Irvine)

□ Soy resin + feathers/glass fibers + melamine (2013 – Un. Delaware)

□ banana & wheat gluten (2016 – India)

□ PLA + hemp fibers (2019 – India)

□ PLA + cellulose acetate (2020 – Univ. Dresden)

PLA + cotton (2023 – Univ. Genoa)

Benchmarking of rigid substrates

□ Jiva Materials (UK) with Infineon: Soluboard \rightarrow soluble in hot water (interesting for power electronics to recover some components but what about the reliability?)

□ Meshlin (Hungary) with Arduino → PLA/flax fibers, bio-sourced Flame Retardant (FR) instead of Brominated FR, no PFAS and bioleaching of PCBs

desire4eu-eic.eu

DESIRE4EU aims at revolutionize the life-cycle of electronic boards by introducing **bio-based processes and materials** both in their **design**, **fabrication and end-of-life** phases, to get **fully circular and sovereign European electronics value chains** (1st sept. 24 – 31 aug. 28)

This project has received funding from the European Union's Horizon Europe EIC Pathfinder Challenges programme under GA N°101161251

Bio-sourced PCBs

□ Flexible substrates examples:

- Paper: Fedrigoni group (Italy)
- \rightarrow European project « Circel-Paper »

Cellulose Laurate: « PET like »

□ Bio-sourced PCBs: assembly

□ Lower Tg (120°C max) → Vapor Phase Soldering (VPS) but CFCs...

Bio-sourced PCBs: assembly

□ Sn-Bi soldering (reflow: 139°C)

Caution ! Bi resources = 4 kilotons / yr
 = 2% of global electronic boards...

Bio-sourced PCBs: Ecological metal recovering

- Copper, a critical metal (MC)
- European directive: 85% of MC must be recoveredWe are far from that!...
- Limits of current recycling methods
 - They are energy consuming and polluting
 Some elements are difficult to recycle (epoxy resin, packages...)
- Europe owns the largest amount of stocked copper in WEEE

Copper mine of Chuquicamata (Chile)

<image>

□ Microbiological and Chemical coupling - Solubilization of metals favored by bacteria

□ Bio-sourced PCBs: Ecological metal recovering

□ First results in a single bio-reactor

- Acid production / sulfate oxidation by microorganisms
- Accelerated dissolution of copper / oxidation by Fe(III)
- Dissolution of 100% of copper in 6 days
 - BRGM: 96% of copper in 2 days with FR4 PCBs and a double bio-reactor
- New design rules for the PCB to speed up the process: the higher the effective surface of metallic tracks, the faster the process is.

Bio-sourced PCBs in RF

Electromagnetic properties:

Dielectric constant: 2-4, loss tangent ~0,01 (~FR4)

Losses @900 MHz - paper 80 g/m² - dry (in red)
 & volumetric moisture content contribution (in blue)

□ Moisture sensitivity of these dielectric properties

Devices: first digital and RF circuit using a bio-sourced PCB

Modification of line widths (impedance matching)
 Assembly: some minor manual repairs

1 on-going PhD — 1 best senior paper award @ ISSE23

Devices: antennas on PLA/Flax substrate

□ Reconfigurable antenna for massive MIMO < 7GHz

- ANR NF-PERSEUS project French PEPR 5G
- □ In RF, no variation of dielectric constant above Tg
 - \rightarrow power amplifiers compatibility

ournal overview 🗸 🗸	For authors	For reviewers	For editors
dvances in Materials Science and	Engineering / 2017 /	Article	
On this page		Research Article Open Access Volume 2017 Article ID 6913835 https://doi.org/10.1155/2017/6913835 GR	
Abstract		Show citation	
Introduction		Dielectric Properties of 3D Printed	
Results and Discussion		Polylactic Acid	
Conclusion		Claudius Dichtl. ¹ Pit Sippel. ¹ and Stephan Krohns 7 01	

1 on-going PhD

Materials

\Box Tg and biodegradability of biopolymers \rightarrow interdisciplinarity!

Do not modify current industrial processes

- Lead free soldering was an expensive, difficult and complicated experience
- □ Same mechanical and thermal properties (as in alternative resins for cleanroom processes such as chitin-based ones),
- □ ... Unless a technological breakthrough (sticking for instance)

What about these technologies' maturity?

Design rules: by 2030

IESE

- □ Multilayers capabilities → chiplet approach **Z** Fraunhofer
- □ Surface roughness?

Crushing or not?

- Delamination by biodegradation (enzymes)?
- □ Consequences on track widths, gaps between tracks, number of layers...

Consider the recycling process: -70%wt on ultimate waste is a target

Possible consequences in micro and nano-technologies

Middle term: new bio-sourced materials in clean room processes, packages and interconnexions

□ Long term (because of geometrical and materials complexities): new design rules for ICs, thus requiring LCA databases improvements

Acknowledgements to the DHREAMS team of CROMA (Tan-Phu Vuong, Nhu-Huan Nguyen, Thierry Lacrevaz, Nicolas Corrao, Vincent Grennerat, Rim Berro), G2ELab (Pierre-Olivier Jeannin), IGE (Jean Martins, Lorenzo Spadini, Elia Laroche, Armelle Crouzet), Budapest University (Attila Géczy), Meshining Co. (Andras Czizar) and all the partners of DESIRE4EU.

EU – INDIA – Joint Researchers Workshop on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu