

EU – India Joint Researchers Workshop on Semiconductors

▶ 9 October 2024

Towards Silicon Photonics 4.0

Roel Baets, Em. Prof.

Ghent University (UGent) – imec – ePIXfab

This presentation is based on a plenary presentation at the European Conference on Optical Communications (ECOC) in Frankfurt (22-26 Sept 2024)

Brussels, Belgium October 9th 2024 EU – INDIA - Joint Researchers Workshop on Semiconductors

 \odot

SILICON PHOTONICS

The implementation of high density photonic integrated circuits by means of CMOS(-like) process technology on large silicon wafers

Pictures, courtesy of imec

Enabling complex optical functionality on a compact chip at low cost

THE KEY DRIVER FOR WAFER DEMAND (SO FAR): DATA CENTERS

For a typical data center:

- 100K to 1M servers
- multiple optical fiber connections per server
- 100's MWatt energy consumption

SILICON PHOTONICS TRANSCEIVERS FOR DATA CENTERS AND FOR TELECOM

Datacenter silicon photonic transceiver market share in dollars

Datacenter silicon photonic transceiver market share in units

Typical data rate: 100-800 Gb/s Typical symbol rate: 25-50 GBaud

- PSM4 (4 parallel fibers)
- WDM (4 wavelengths)
- Polarisation multiplexing
- PAM4
- Coherent (QPSK, 16-QAM)

Under development + early deployment:

Data rate: >800 Gb/s

Symbol rate: > 50 Gbaud

Evolution towards Co-Packaged Optics (CPO)

Observations

- Most manufacturing and product companies in the field of silicon photonics are US based or SE/E-Asia based
- The EU has very strong R&D players in silicon photonics
- India is building up strong R&D capacity in silicon photonics
- The field is diversifying quickly (new materials, technologies, markets)
- The diversity will bring opportunities for both EU and India
- Cooperation may be key in this context

Trends in silicon photonics research illustrated by imec's research portfolio

Transitioning from research to industrial supply chain *the challenges*

Addressing the challenges towards silicon photonics 4.0

> EU – INDIA – Joint Researchers Workshop on Semiconductors Roel Baets | Ghent University - imec

THE NEW NEEDS

Communication and Interconnect

Higher symbol rates, beyond 100 Gbaud, and lower latency Higher interconnect bandwidth with higher spatial density Higher energy efficiency Seamless integration with light sources, with electronics, co-packaged optics

Other application areas

New wavelength ranges, from UV to mid-IR

Higher optical powers

Lower optical losses

New on-chip photonic functions (advanced sources, isolators, non-volatile memory, ...)

. . .

THE INTERCONNECT BOTTLENECK IN COMPUTE SYSTEMS

GHENT

THE INTERCONNECT ROADMAP

R&D TECHNOLOGY DEVELOPMENTS – SOME EXAMPLES

- integrated laser sources
- modulators with higher bandwidth / lower power
- optically interconnected system-on-wafer

ISIPP: IMEC'S SILICON PHOTONICS TECHNOLOGY

ີ ເກາຍc

LASER/SOA INTEGRATION

Flip-chipped III-V light source

Butt coupling to SiPh waveguide

Micro-transfer printed thin-film III-V light source

Evanescent coupling to SiPh waveguide

MICRO-TRANSFER-PRINTING (MTP) OF AN INP C-BAND SOA ON ISIPP

MICRO-TRANSFER-PRINTING (MTP) OF AN INP C-BAND SOA ON ISIPP

InP/Si hybrid laser cavity with Vernier wide tuning

J. Zhang et al, OFC 2022, doi:10.1364/OFC.2022.Tu2D.2 14

MTP-ED NARROW LINEWIDTH TUNABLE LASERS (INP ON SIN PIC)

B. Pan et al. OFC 2023, doi:10.1364/OFC.2023.Th3B.5

- Si-on-SiN chip: imec
- InP SOA coupon: III-V Lab
- Micro-transfer printing: imec-UGent

MTP-ED O-BAND INAS/GAAS QDOT DFB LASERS

GaAs QD SOA coupon length: 2.16 mm

2nd order Bragg grating

DFB grating length: 1.4 mm

Maximum waveguide-coupled power: 20 mW@10°C

Side-mode-suppression-ratio: 60 dB

J. Zhang et al, ECIO 2023

SOI RING RESONATOR MODULATOR FOR O-BAND WDM TRANSCEIVER

Error-Free with ~ 3.5pJ/bit Optical Energy

LINBO3 ON SIN MODULATOR BY MICRO-TRANSFER PRINTING

T. Van Ackere et al., CLEO 2023

18

LINBO3 ON SIN MODULATOR BY MICRO-TRANSFER PRINTING (MTP)

- Transfer printing of LiNbO₃ thin films on Si/SiN
- Transfer from LNOI wafers

umec

UNIVERSITY

- Introduction of crack barriers
- Introduction of pillars avoiding collapse (because of liquid HF)

High-yield and reliable transfer printing of LN

T. Vandekerckhove, Opt. Mat. Expr. 2023 https://doi.org/10.1364/OME.494038

SECOND HARMONIC GENERATION IN PERIODICALLY POLED LINBO3 ON SIN

VISION: TOWARDS OPTICALLY INTERCONNECTED SYSTEMS-ON-WAFER

Optically Interconnected System-on-Wafer

First 300mm wafer-level reticle-stitched interconnect waveguides (imec)

Measured Wafer-level Loop-back SiN Waveguides

300-mm wafer-level waveguides up to **56cm long**, with **low all-in propagation loss (0.15dB/cm)**

Xu et al., OFC 2024, M4A.3

ເmec

MANY MORE RESEARCH CASES IN SENSING AND LIFE SCIENCE @ IMEC

THE NEED FOR UV-PICS

All bio-molecules/bio-organisms provide fluorescence under UV illumination

TOWARDS A UV-A PLATFORM AT IMEC

AlOx by ALD in a CMOS fab

UV-A PICs (360NM) FOR STRUCTURED ILLUMINATION MICROSCOPY (SIM)

UVC LOW LOSS IN SIO_2 SPIRAL WGS

 E_g =8.9eV $\rightarrow \lambda_{abs}$ ~140nm

Loss at λ_{P} =266nm with air cladding:

- 2 dB/cm for MM WG
- 5 dB/cm for SM WG

Water cladding: 4 dB/cm at λ_P =266nm

In **Out**

GHENT

UNIVERSITY

unec

C. Su et al. Optics Letters 2024

IMEC @ ECOC2024

W1F.1 - Joint Optical Wireless Communication and LiDAR Sensing using A Highly Integrated Optical Phased Array - Xuebing Zhang

W1F.3 - Experimental Evaluation of Passive 2D Optical Beam Scanners for FMCW LiDAR Applications - **Mennatallah Kandil**

W1G.5 - High-performance Silicon Optical Phase Shifter Targeting Large-scale Programmable Photonic Circuits - Huaqing Qiu

W4G.4 - All-Silicon Hybrid-integrated 128-GBd Analog Demultiplexing Optical Receiver - Jakob Declercq

Th2G.3 - A 40 Gb/s NRZ **O-band Silicon Disk Modulator** with **5.4 THz FSR** and 60 GHz/mW Heater Efficiency - **Minkyu Kim**

+ imec-co-authored papers

Trends in silicon photonics research illustrated by imec's research portfolio

Transitioning from research to industrial supply chain *the challenges*

Addressing the challenges towards silicon photonics 4.0

> EU – INDIA – Joint Researchers Workshop on Semiconductors Roel Baets | Ghent University - imec

THE DIVERSITY OF NEW SOLUTIONS (BEYOND SOI AND SIN PICS)

NEW PLATFORMS ON SILICON WAFERS

Thin Film Lithium Niobate (TFLN) PICs Al₂O₃ PICs AIN PICs Diamond PICs Germanium-on-Silicon PICs

ADDING NEW MATERIALS TO EXISTING PLATFORMS (SOI, SIN)

SiN on SOI

III-V on SOI/SiN (InP, GaAs,...)

Electro-optic or piezo-electric materials on SOI/SiN (LiNbO₃, BTO, PZT, polymers, AIN...)

2D-materials (graphene, WSe_2 , WS_2 , MoS_2 ...) on SOI/SiN

Diamond on SOI/SiN

Colloidal quantum dots on SOI/SiN

Liquid crystals on SOI/SiN

Magneto-optic materials on SOI/SiN

DIVERSITY IN INTEGRATION TECHNOLOGY FOR NEW MATERIALS

Processes for monolithic integration

- epitaxy and hetero-epitaxy
- chemical vapour deposition
- atomic layer deposition
- physical vapour deposition

...

- spin coating (polymers)
- sol-gel process

Processes for hybrid integration

- flip-chip solder bump processes
- chip-to-chip butt-coupling attach
- photonic wire bond
- fiber (array) attach
- co-packaged optics (assembly substrates, motherboards)
- photonic wire bond
- ...

Processes for heterogeneous integration

- wafer-to-wafer and die-to-wafer bonding
- micro-transfer printing
- flip chip solder bump (wafer level)
- wafer reconstitution, fanout wafer-level packaging, etc.
- micro-optic bench attach

...

DIVERSITY OF FUNCTIONALITIES/APPLICATIONS ENABLED BY SIPH

NON-TRANSCEIVER PIC-BASED PRODUCTS IN THE MARKET

SENTEA'S PIC-BASED FIBER BRAGG GRATING INTERROGATOR

DIVERSITY OF FUNCTIONALITIES/APPLICATIONS ENABLED BY SIPH

KEY BARRIER FOR AN SME DEVELOPING A SIPH-BASED PRODUCT

High NRE-cost + slow prototyping

- expensive prototyping of wafers made on an existing process flow
- first-time-right is still hard \Rightarrow multiple prototyping cycles
- long time-to-market \Rightarrow high personnel cost
- costly development of new process flow (if needed)

THE NRE-GAP

THE NRE-BIAS

Most process flow development focuses on high NRE-cases

Low NRE-cases are 'left in the cold'

Trends in silicon photonics research illustrated by imec's research portfolio

Transitioning from research to industrial supply chain *the challenges*

Addressing the challenges towards silicon photonics 4.0 (my personal vision)

> EU – INDIA – Joint Researchers Workshop on Semiconductors Roel Baets | Ghent University - imec

INDUSTRY 4.0

GHENT

UNIVERSITY

Smart manufacturing

Innovation-based and science-based Flexibility and agility Decentralized model of operations Manufacturing as a Service Data-driven automation, sensing and IoT, machine learning and AI Additive manufacturing Optimisation for sustainability Upskilling and reskilling of personnel unec

Understanding Semiconductor Industry 4.0 https://www.acldigital.com/blogs/industry-40-future-advanced-semiconductormanufacturing

TOWARDS SILICON PHOTONICS 4.0

Break down supply chain barriers, especially for innovative start-ups and scale-ups, in spite of diversifying technologies, applications and markets

A mix-and-match smart manufacturing approach to design and build innovative PIC-products, with:

- a decentralized open access foundry and supply chain model
- additive chiplet-based backend manufacturing approaches
- technology service providers that offer robust technology modules
 - standardized modules that can be reused for multiple applications
 - data driven, thorough, open-access module-PDKs
 - elaborate specification of "interfaces" between modules
 - parametrized models, for designers to use
 - seamless interfacing to non-photonic modules (electronic, mechanical, chemical, fluidic...)
 - process control monitor circuits (PCMs) to assess compliance of individual modules with specs
- development of multi-stakeholder PDKs for complete process flows
- programmable PICs for rapid prototyping

TOWARDS SILICON PHOTONICS 4.0

Break down supply chain barriers, especially for innovative start-ups and scale-ups, in spite of diversifying technologies, applications and markets

A mix-and-match smart manufacturing approach to design and build innovative PIC-products, with:

- a decentralized open access foundry and supply chain model
- additive chiplet-based backend manufacturing approaches
- technology service providers that offer robust technology modules
 - standardized modules that can be reused for multiple applications
 - data driven, thorough, open-access module-PDKs
 - elaborate specification of "interfaces" between modules
 - · parametrized models, for designers to use
 - seamless interfacing to non-photonic modules (electronic, mechanical, chemical, fluidic...)
 - process control monitor circuits (PCMs) to assess compliance of individual modules with specs
- development of multi-stakeholder PDKs for complete process flows
- programmable PICs for rapid prototyping

TOWARDS SILICON PHOTONICS 4.0

BUILDING A EUROPEAN SILICON PHOTONICS VALUE CHAIN

silicon photonics value chain by providing early access to R&

manufacturing through technology partners.

Press Information

Lausanne, Switzerland - 20th September, 2024

World's first integrated value chain platform initiative for heterogeneous integration in photonics

Three leaders in photonic integrated circuits announce collaboration to offer a seamless path for heterogeneous integration with micro-Transfer Printing (MTP).

Lausanne, Cork, Erfurt, September 20th, 2024 – In a bold move to revolutionise photonic integrated circuits (PICs), three of the industry's foremost leaders, X-Celeprint, Ligentec, and X-FAB, are aligning their efforts to simplify and enhance heterogeneous integration through Micro Transfer Printing (MTP). This collaboration is set to close existing gaps in the value chain and offer a seamless journey from R&D to mass production.

Press release Imec demonstrates the c quality SiN waveguide te silicon photonics platfor

LEUVEN (Belgium), January 31, 2023 — Today, at an invited talk at SPIE Photonics West (San Francisco), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, announced that it demonstrated co-integration of its highquality silicon nitride waveguide technology with its silicon photonics platform without performance degradation of the high-bandwidth active devices. An important

Additive Manufacturing through Micro-transfer Printing

Inherits advantages of FC (known-good die, back-end) & D2W (high throughput, efficient coupling)

Additive Manufacturing through Micro-transfer Printing

MICRO-TRANSFER PRINTING BASICS

1 cm² stamp,

10,000 posts,

> 1M LEDs/hr

•

•

Micro-transfer printing in action

PROGRAMMABLE PHOTONICS

or photonic FPGAs

reconfigurable photonics

photonic processors

universal photonic circuits ...

Photonic Integrated Circuits that <u>can be reconfigured</u> using <u>software</u> to perform <u>different functions</u>.

PROGRAMMABLE MICROWAVE PHOTONIC PROCESSOR

PROGRAMMABLE MICROWAVE PHOTONIC PROCESSOR

IN CONCLUSION

Observations

- Most manufacturing and product companies in the field of silicon photonics are US-based or SE-Asia-based
- The EU has very strong R&D players in silicon photonics
- India is building up strong R&D capacity in silicon photonics
- The field is diversifying quickly
- The diversity will bring opportunities for both EU and India
- Collaboration may be key in this context

ACKNOWLEDGEMENTS

Photonics Research Group of Ghent University – imec

imec at large

Special thanks to:

Philippe Absil, Wim Bogaerts, Bart Kuyken, Nicolas Le Thomas, Gunther Roelkens, Joris Van Campenhout, Pol Van Dorpe

European Research Council

EU – INDIA – Joint Researchers Workshop on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu