Sílícon Photonícs Research Centre of Excellence *@IIT Madras*

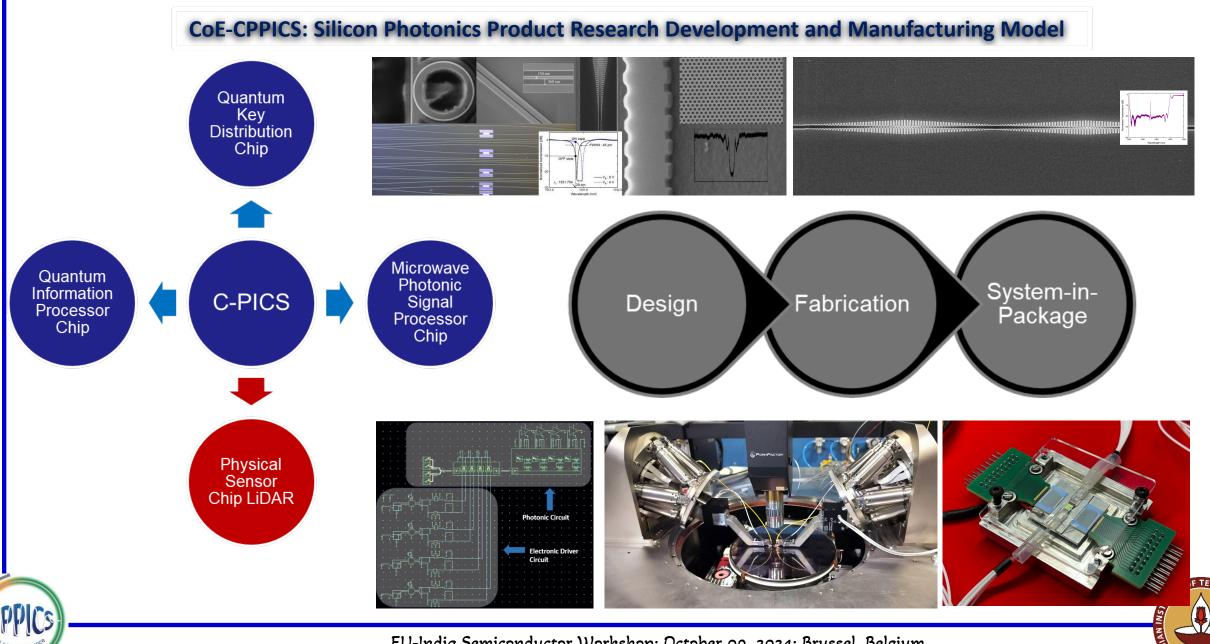
Bijoy Krishna Das

Professor, Department of Electrical Engineering

IIT Madras, Chennai 600036, India

Silicon Integrated Photonics @ IIT Madras

18 Years of Silicon Photonics Research @ IIT Madras


2

Silicon Photonics CoE-CPPICS : Inauguration Ceremony

18 Years of Silicon Photonics Research @ IIT Madras

Silicon Photonics Centre of Excellence @ IIT Madras (Since January 2021)

4

Silicon Photonics CoE-CPPICS : Success in Industry Collaboration

🈏 Tweet 🛛 in Share 🖉 E-mail

BUYER'S GUIDE EVENTS SUBSCRIBE CONFERENCE

IIT Madras and SilTerra Malaysia team up on silicon photonics

Add to reading list

hursday 30th May 2024

Destination INDIA!

izmo

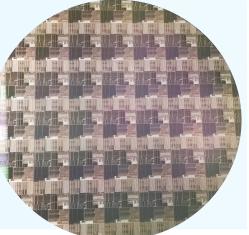
izmo Microsystems Pvt. Ltd. Your IC Packaging Partner

izmo micro: custom SiP & IC Packaging for highdensity, high-performance systems

Wide range of packaging options to accommodate diverse design specifications and functional requirements, including complex mixed-technology assemblies.

KEYSIGHT TECHNOLOGIES

and Receiver Chips in



<u>Home</u> > <u>The 25th European Conference on Integrated Optics</u> > Conference paper

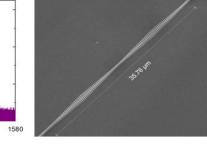
Silicon Photonic Wafer-Scale Yield of Single Mode Resonator with Broadband DBR Mirrors

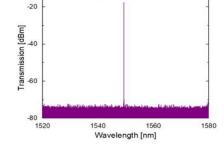
Conference paper | First Online: 16 June 2024 pp 565–570 | Cite this conference paper

Arnab Goswami 🔄, Pratyasha Priyadarshini, Gan Yih Loong, Ng Chew Yan, Deleep Nair, Anjan Chakravorty & Bijoy Krishna Das

Research Article

Vol. 32, No. 16/29 Jul 2024/ Optics Express 27409


Optics EXPRESS


Distributed Bragg reflector based ASE noise removal pump wavelength filters for futuristic chip-scale quantum photonic circuits

PRATYASHA PRIYADARSHINI, ARNAB GOSWAMI, ASHITOSH VELAMURI, AND BIJOY KRISHNA DAS^{*}

Center for Programmable Photonic Integrated Circuits and Systems, Department of Electrical Engineering, Indian Institute of Technology, Chennai 600036, India

-40 -60 1520 1540 1560 Wavelength [m]

PATENT FILED

Conferences > 2024 8th IEEE Electron Device... 3

Cite This

A Robust and Low-cost Fiber-optic Array Attachment Solution for Silicon Photonics Chips with Large Number of Input/output Channels

Publisher: IEEE

🗾 🔁 PDF

A. Gayen; N. Nallusamy; G. Ezhilarasu; S. Hassan; S Vinoth; K. Piyush; A. Goswami; B.K. Das

Full Text Views

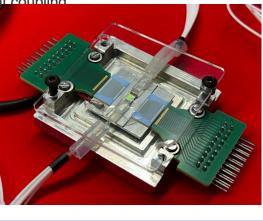
70

Abstract:

Document Sections

I. Introduction

Abstract

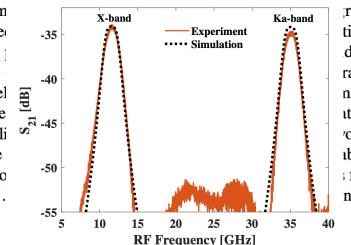

II. Fiber Array to PIC Attachment System

A programmable photonic integrated circuit can have a large number of input/output waveguide light coupling ports. We have developed a robust and low-cost solution for attaching different types of fiber-optic

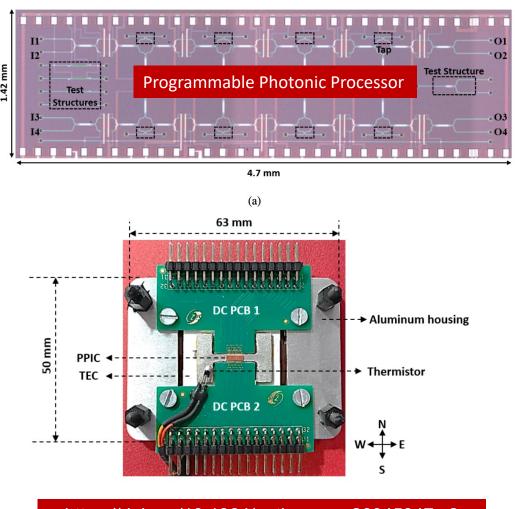
to silicon photonics chips. In our first attempt, we achieved light coupling of upto 25% through a gracoupler which is very close to its theoretical value of about 35%. The coupling efficiency remained even after six months from its packaging date.

Published in: 2024 8th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)

EU-India Semiconductor Workshop: October 09, 2024: Brussel, Belgium


Photonic IC

Reconfigurable Multiband Microwave Filters using Programmable Photonic Integrated Circuit


Ashitosh Velamuri¹, Kumar Piyush¹, Yash Raj¹, Arnab Goswami¹, Anandha Padmanabhan², Nitin Ghodgaonkar², Dinanath Soni², Janakiraman Viraraghavan¹, and Bijoy Krishna Das^{1,*}

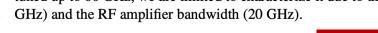
¹Centre for Programmable Photonic Integrated Circuits and Systems Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India ²IZMO Microsystems, Bengaluru - 560 066, India *bkdas@ee.iitm.ac.in

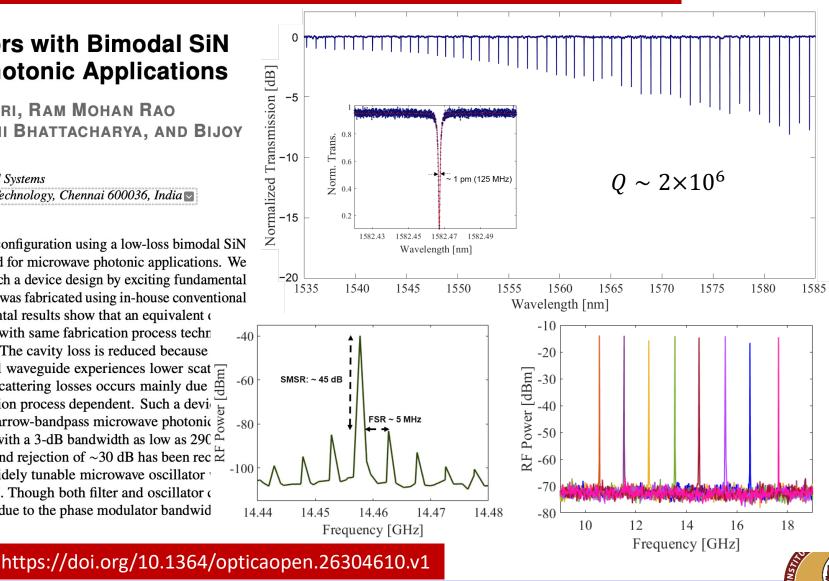
Abstract: A program of 14 tunable balance photonics technology filters. The photonic an external 16-channel integrated into both the packaged chip is stabili ambience temperature microring resonators o ranges (23.25 GHz, 11.

rated circuit comprised tigated using a silicon d microwave photonic rable operations using no-optic phase shifters uting temperature of the 'oid any interference of ible into three different for three free-spectral nd microwave photonic

https://doi.org/10.1364/opticaopen.26045947.v2

8

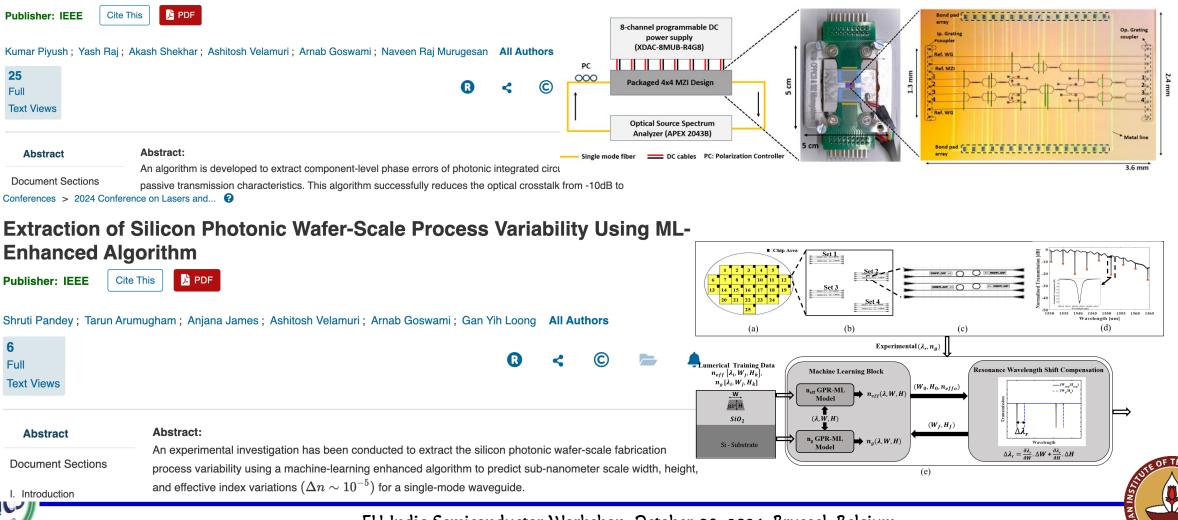

Silicon Photonics CoE-CPPICS : Recent IP Generation


Where we stand now in terms of experimental demonstration?

High-Q Microring Resonators with Bimodal SiN ² Waveguides: Microwave Photonic Applications

- ANUSHKA TIWARI, ASHITOSH VELAMURI, RAM MOHAN RAO
- BOYAPATI, ARNAB GOSWAMI, ENAKSHI BHATTACHARYA, AND BIJOY KRISHNA DAS^{*}
- Centre for Programmable Photonic Integrated Circuits and Systems
- Department of Electrical Engineering, Indian Institute of Technology, Chennai 600036, India
- Corresponding author: bkdas@ee.iitm.ac.in

Abstract: A high-Q microring resonator in all-pass configuration using a low-loss bimodal SiN waveguide design has been demonstrated and explored for microwave photonic applications. We have recorded a Q-value as high as $\sim 2 \times 10^6$ from such a device design by exciting fundamental mode into the bimodal bus and ring waveguides which was fabricated using in-house conventional silicon photonics process technology. Our experimental results show that an equivalent (design with a singlemode waveguide and fabricated with same fabrication process techn exhibit nearly 7 times lower O-value (~ 2.5×10^5). The cavity loss is reduced because fact that the fundamental guided mode in a bimodal waveguide experiences lower scat \overline{a} and bend-induced radiation losses (~ 0.1 dB/cm); scattering losses occurs mainly due $\frac{1}{2}$ waveguide sidewall roughness which in fact fabrication process dependent. Such a devi been used further to demonstrate a widely tunable narrow-bandpass microwave photonic The experimental results exhibit a narrowband filter with a 3-dB bandwidth as low as 290 $\stackrel{\sim}{\rightharpoonup}$ with broad tunability from 5-45 GHz and the side-band rejection of \sim 30 dB has been rec \simeq Furthermore, the device was used to demonstrate widely tunable microwave oscillator 22 signal-to-sidemode suppression ratio of up to 45-dB. Though both filter and oscillator (tuned up to 60 GHz, we are limited to characterize it due to the phase modulator bandwid 25



EU-India Semiconductor Workshop: October 09, 2024: Brussel, Belgium

Conferences > 2024 Conference on Lasers and... 3

Estimation of Local Phase Errors in Silicon Photonic MZI Mesh from Passive Measurements

Team CoE-CPPICS: Admin & Technical Staff and Research Scholars

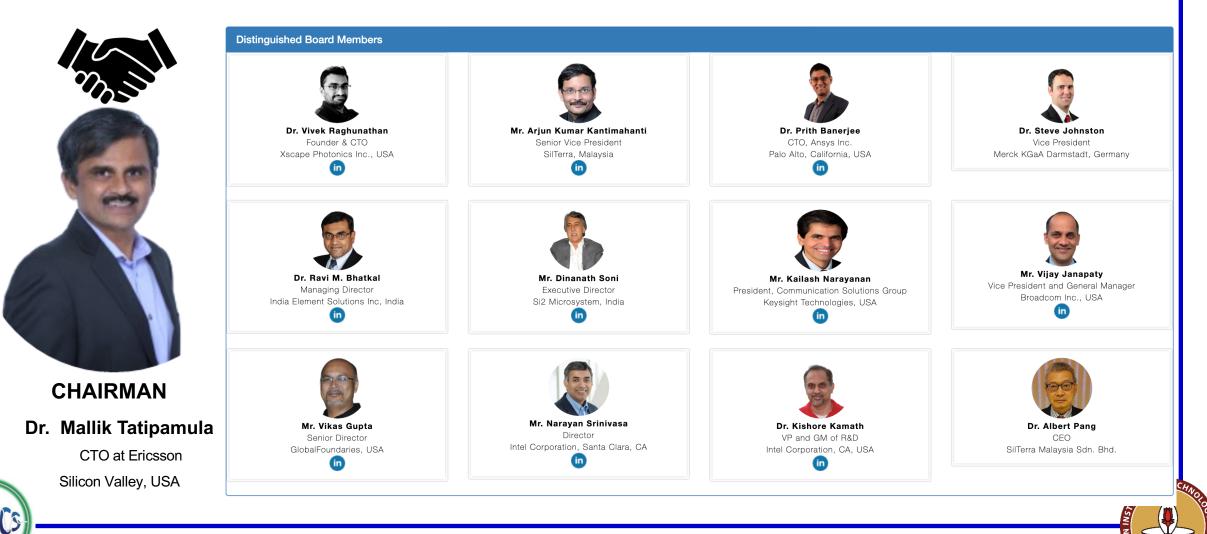
11

Silicon Photonics CoE-CPPICS: Resources

Chief Investigator In-house process development Device design, simulation, fabrication & testing Modelling, circuit design and foundry tapeout **Chief Technology Officer** Wafer/die/board-level testing & programming System-in-Package prototypes and products

Co-Investigators:

Amitava DasGupta, Anil Prabhakar, Anjan Chakravorty, Deleep Nair, Deepa Venkitesh, Enakshi Bhattacharya, Janakiraman Viraraghavan, Nandita DasGupta, Saurabh Saxena, Sudharsanan Srinivasan, Sankaran Aniruddhan, Natarajan Venkatachalam


EU-India Semiconductor Workshop: October 09, 2024: Brussel, Belgium

12

E OF TE

CoE-CPPICS: Silicon Photonics Product Research Development and Manufacturing Model

Industry Advisory Board for Guidance and Supports

Thank you

EU-India Semiconductor Workshop: October 09, 2024: Brussel, Belgium

14