EU - India **Joint Researchers Workshop on Semiconductors**

 \blacktriangleright 9 October 2024

How 3D integration can help the emergence of Power efficient innovative architectures?

Olivier Faynot

Silicon Component Division Manager

CEA-Leti

 $\overline{\odot}$

EU – INDIA - Joint Researchers Workshop on Semiconductors Olivier Faynot

Brussels, Belgium October 9th 2024

Outline

- \bullet Why going Vertical?
	- 3D Integration Building Blocks

 3D integration for innovative architectures

Global data generation (actual & forecast)

The cost of moving data

 $[J. Wang - ISSCC'19]$

Bill Dally, "To ExaScale and Beyond", 2010

FEOL CMOS scaling

>1000x $b\lambda$ 2030

Memory technologies

Disruptive Computing

Chiplet & 3D System

- •Why going Vertical?
- •3D Integration Building Blocks

 \bullet 3D integration for innovative architectures

New paradigms are needed

•Interconnects Bottleneck

- – $-$ Dramatic R.C increase \rightarrow strong impact on latencies
- Gate delay << interconnects delay

•Scaling becomes costly

- High development cost (mask, IP porting, verif…)
- High manufacturing cost (low yield with large die)

•Heterogeneous architectures needed

- More processing (AI, perception accelerators…)
- More data to handle (memory capacity, fusion…)
- Reuse of legacy (ISA, I/O interface…)
- More modularity, scalability & sustainability

3D benefits for advanced systems

- • High-performance interconnections
	- $-$ Low R, L, C \rightarrow latencies, bandwidth, energy efficiency
	- Massively parallel processing with vertical links
- • Answers to modern design needs
	- Reduced form factors, I/O number non limited by pad size
	- Partitioning, IP reuse, scalability & density
- • Heterogeneous integration
	- Mixed CMOS nodes & materials (Si, III-V, II-VI, passives, MEMS)

EU – INDIA – Joint Researchers Workshop on Semiconductors **Sensor on logic Memory on Logic Chiplet-based integrations III-V on Logic** Olivier FAYNOT | CEA-Leti

SoC performance SiP benefits

 $\, +$

Morphology of a 3D circuit

•**Layer-to-layer vertical interconnects**

Miniaturization trend: pillars, hybrid bonding …

•**Intra-layer vertical interconnects**

Communication between frontside and backside of each layers Through silicon Vias (TSV)

•**Intra-layer in-plane interconnects (2D)**

ReDistribution Layers (RDL)

Assembly configurations

Die to die

- •Known Good Dies \rightarrow yield
- •Heterogeneous integration
- •Flexible design
- • Low assembly throughput
	- •Low alignment accuracy
	- •Very high cost

Pure packaging operation

Reference is a vector wafer by the UP is a vector wafer by the UP is a vector wafer

• Collective process • High assembly throughput •High alignment accuracy

• Yield loss •Strong design limitation

Mass production for imagers and memories

EU – INDIA – Joint Researchers Workshop on Semiconductors olivier FAYNOT | CEA-Leti 11

- •Known Good Dies \rightarrow yield
- •Heterogeneous integration
- •Flexible design
- •Low assembly throughput
- •Low alignment accuracy

Breakthrough processes needed

"High density TSV" (HD-TSV) process flow

Base wafer

 $\overline{\text{o}}$ x-ox

Base wafer

- • TSV done after circuit processing*
	- Diameter typically < 2µm & height <15 µm
	- Uniform silicon thinning needed (TTV < 1µm)
	- TSV fully filled with Cu

Olivier FAYNOT | CEA-Leti

9µm

<u>mana a</u>

1x10 µm

EU – INDIA – Joint Researchers Workshop on Semiconductors S. Borel et al., Electronic Components and Technology Conference, 2023

Technologies for 3D interconnects

Direct hybrid bonding process: a hot topic !

- •• Mix SiO₂/SiO₂ & Cu/Cu bonding
- •Precautious CMP process
- •Proper design rule manual
- •Unprecedented benefits
- •Ultra dense interconnections
- •Improved mechanical strength, no organics

Direct hybrid bonding principle

Y. Beilliard et al., IJSS, Vol. 117, June 2017, pp. 208-220

SiO. \sqrt{M}

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti J. Jourdon et al., IEDM 2018 L. Millet et al., VLSI 2018

Die-to-wafer hybrid bonding

E. Bourjot *et al*., ECTC 2021

E. Bourjot et al., « Towards a Complete Direct Hybrid Bonding D2W Integration Flow: Known-Good-Dies and Die Planarization Modules Development », 3DIC 2019

E. Bourjot et al., "Known Good Dies (KGD) strategies compatible with D2W Direct Hybrid bonding", MAM 2020

E. Bourjot et al., « 10µm and 5µm die-to-wafer direct hybrid bonding », in 2022 ESTC, sept. 2022.

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti

Resistance per daisy chain-link (Ohm)

Hybrid Bonding Solutions

- › Direct bonding of metal and dielectric
- › Down to 1 micron pitch interconnects

- › Wafer-to-wafer (W2W) or Die-towafer (D2W) technologies
- › High heterogeneity allowed by D2W

- \rightarrow Collective D2W approaches
- \rightarrow Self-assembly for high precision & high throughput

Hybrid bonding pitch roadmap

Pitch down to International Cooperation

- Why going Vertical?
	- 3D Integration Building Blocks
- 3D integration for innovative architectures

•

Smart imager developments

Object Detection

Autonomous vehicle functions

– Edge-AI targeted applications (autonomous vehicle)

From imagers to vision sensors

1x10µm HD TSV (2µm pitch) 100% yield on 10 000 TSV daisy chains $\rm R_{TSV}$ = 500mΩ Misalignment HB2: max. 1 µm (avg 200 nm) Misalignment HB1: max. 350 nm (avg 100 nm) 1x5µm HD TSV under development

J. J. Suarez Berru . 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023, pp. 97-102,

Chiplet approach: Heterogenous IC design

- • Interposer & chiplets
	- $-$ Interconnects performance \rightarrow R.C delay
	- Exceeding latency & bandwidth limits
	- Cost/form factor advantages
- •Appropriate partitioning
- • Heterogeneous IC design
	- Optimized technology for each function
	- specialization by app.: CPU, GPU, AI (...)
	- Standardization (coming soon, hopefully)

The end of "all for the SoC" paradigm (image from DARPA) Chiplet topology on interposer

HPC and AI converging roadmaps

 \checkmark Chip-to-chip side-by-side communication

Metallic Passive interposer Active interposer (ENoC) Intact

 \checkmark Extended communication capability (increased distance, routing, power management, …)

Photonic interposer (ONoC) Starac

Optical communication:

- \checkmark Reduction of on-chip latencies
- \checkmark Higher throughput
- \checkmark Lower energy consumption
- \checkmark **Scalability**

More than 12 years expertise on Silicon Interposers

Y. Thonnart et al., "POPSTAR: a Robust Modular Optical NoC Architecture for Chiplet-based 3D Integrated Systems," Proc. DATE, 2020, p. 6. D. Saint Patrice et al. "Process Integration of Photonic Interposer for Chiplet-Based 3D Systems" Proc. IEEE ECTC. 2023

Active interposers (INTACT)

life.quamented

- • 1st functional architecture with active interposer
	- Si interposer: 65nm including TSV middle 10x100µm
	- Chiplets FDSOI 28nm
	- State of the art 20µm pitch Cu pillars (diam. 10µm)
	- High performance 3D connecting between chiplets and DC/DC convertors

D. Lattard et al., 3DIC 2016 E. Guthmuller et al., ESSIRC 2018 D. Dutoit, D43D 2018 P. Coudrain et al., ECTC, 2019

2019 NANOELEC

Interposer level optical links for HPC

Architecture

Co-Integration & test 3D Assembly

*ONoC Popstar Interposer Co-integration TSV mid (12x100*μ*m) and photonic FEOL after Metal 1 Silicon Photonic Interposer front side: 4 chiplets and 6 electro-optical drivers in 28nm FD-SOI*

Full demonstration

expected in 2025

- •4 x 16 cores FDSOI 28nm Chiplet
- \bullet 6 electro-optical drivers (Rx/Tx) in 28nm FDSOI
- •Silicon photonic interposer: Full integration @CEA-Leti

Leti Quantum interposers

UBM

MET2 NbN

Vias

Ti/TiN/W

MET1 Ti/TiN/AlCu

Dielectrics

 \checkmark Superconducting routing with embedded passive compounds

C. Thomas et al., Materials for Quantum Technology, 2, 3, 035001, (2022)

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti 25

500 nm

 \bullet

•

o

o

 Ω

o

o

o

 Ω

More Moore : Wafer level chip architecture

Minimized TSV footprint on active devices

Heterogeneous Integration of advanced no

Combination of DTW + TSV (Mid or HD)

TSV HD + W2W allows many active layers wafer

Interconnection density increase (x, y z)

Power delivery network

Applications HPC &IA

More than Moore : system level

Heterogeneous compute chiplets:

- •Advanced node (7nm, 5nm)
- •Heterogeneous (size, pitch, node)
- •Full digital compute chiplet
- •Optional: TSV HD for memory cube
- •Face down

3D assembly:

- •Die-to-Wafer
- •Hybrid Bonding
- •Face-to-Face

Base die:

- •Mature node (FD28, GF22FDX,…)
- •Face up
- •TSV for power delivery and Ios (preferred mid process)

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti

26

EU – INDIA – Joint Researchers Workshop on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA No 101092562

www.icos-semiconductors.eu