EU – India Joint Researchers Workshop on Semiconductors

▶ 9 October 2024

How 3D integration can help the emergence of Power efficient innovative architectures?

Olivier Faynot

Silicon Component Division Manager

CEA-Leti

 \odot

EU – INDIA - Joint Researchers Workshop on Semiconductors Olivier Faynot

Brussels, Belgium October 9th 2024

Outline

- Why going Vertical?
 - **3D Integration Building Blocks**

3D integration for innovative architectures

Global data generation (actual & forecast)

The cost of moving data

[J. Wang – ISSCC'19]

Bill Dally, "To ExaScale and Beyond", 2010

FEOL CMOS scaling

>1000x by 2030

Memory technologies

Disruptive Computing

Chiplet & 3D System

- Why going Vertical?
- 3D Integration Building Blocks

• 3D integration for innovative architectures

New paradigms are needed

- Interconnects Bottleneck
 - − Dramatic R.C increase \rightarrow strong impact on latencies
 - Gate delay << interconnects delay
- Scaling becomes costly
 - High development cost (mask, IP porting, verif...)
 - High manufacturing cost (low yield with large die)
- Heterogeneous architectures needed
 - More processing (AI, perception accelerators...)
 - More data to handle (memory capacity, fusion...)
 - Reuse of legacy (ISA, I/O interface...)
 - More modularity, scalability & sustainability

3D benefits for advanced systems

- High-performance interconnections
 - − Low R, L, C \rightarrow latencies, bandwidth, energy efficiency
 - Massively parallel processing with vertical links
- Answers to modern design needs
 - Reduced form factors, I/O number non limited by pad size
 - Partitioning, IP reuse, scalability & density
- Heterogeneous integration
 - Mixed CMOS nodes & materials (Si, III-V, II-VI, passives, MEMS)

Sensor on logic

Memory on Logic Chiplet-based integrations EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti

III-V on Logic

SoC performance

SiP benefits

Morphology of a 3D circuit

• Layer-to-layer vertical interconnects

Miniaturization trend: pillars, hybrid bonding ...

• Intra-layer vertical interconnects

Communication between frontside and backside of each layers Through silicon Vias (TSV)

• Intra-layer in-plane interconnects (2D)

ReDistribution Layers (RDL)

Assembly configurations

Die to die

- Known Good Dies → yield
- Heterogeneous integration
- Flexible design
- Low assembly throughput
 - Low alignment accuracy
 - Very high cost

Pure packaging operation

Wafer to wafer

Collective processHigh assembly throughputHigh alignment accuracy

Yield lossStrong design limitation

Mass production for imagers and memories

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti

Die to wafer

- Known Good Dies \rightarrow yield
- Heterogeneous integration
- Flexible design
- Low assembly throughput
- Low alignment accuracy

Breakthrough processes needed

"High density TSV" (HD-TSV) process flow

Base wafer

- TSV done after circuit processing*
 - Diameter typically < 2µm & height <15 µm
 - Uniform silicon thinning needed (TTV < 1 μm)
 - TSV fully filled with Cu

S. Borel et al., Electronic Components and Technology Conference, 2023

Base water

1 0X-0) 9µm

Technologies for 3D interconnects

Direct hybrid bonding process: a hot topic !

- Mix SiO₂/SiO₂ & Cu/Cu bonding
- Precautious CMP process
- Proper design rule manual
- Unprecedented benefits
- Ultra dense interconnections
- Improved mechanical strength, no organics

J. Jourdon et al., IEDM 2018

EU – INDIA – Joint Researchers Workshop on Semiconductors

Olivier FAYNOT | CEA-Leti

Direct hybrid bonding principle

Y. Beilliard et al., IJSS, Vol. 117, June 2017, pp. 208-220

L. Millet et al., VLSI 2018

Die-to-wafer hybrid bonding

E. Bourjot et al., ECTC 2021

E. Bourjot et al., « Towards a Complete Direct Hybrid Bonding D2W Integration Flow: Known-Good-Dies and Die Planarization Modules Development », 3DIC

E. Bourjot et al., "Known Good Dies (KGD) strategies compatible with D2W Direct Hybrid bonding", MAM 2020

E. Bourjot et al., « 10µm and 5µm die-to-wafer direct hybrid bonding », in 2022 ESTC, sept. 2022.

EU – INDIA – Joint Researchers Workshop on Semiconductors Olivier FAYNOT | CEA-Leti

Resistance per daisy chain-link (Ohm)

Hybrid Bonding Solutions

- Direct bonding of metal and dielectric
- Down to 1 micron pitch interconnects

- Wafer-to-wafer
 (W2W) or Die-to wafer (D2W)
 technologies
- High heterogeneity allowed by D2W

- > Collective D2W approaches
- Self-assembly for high precision & high throughput

Hybrid bonding pitch roadmap

Pitch down to previous Cooperation

- Why going Vertical?
 - **3D Integration Building Blocks**
- 3D integration for innovative architectures

Smart imager developments

- From imagers to vision sensors
 - Edge-AI targeted applications (autonomous vehicle)
- 3-layer scheme:
 - Pixel array / Readout IC / AI & memory layer

Autonomous vehicle functions

1x10 μ m HD TSV (2 μ m pitch) 100% yield on 10 000 TSV daisy chains R_{TSV} = 500m Ω Misalignment HB2: max. 1 μ m (avg 200 nm) Misalignment HB1: max. 350 nm (avg 100 nm) 1x5 μ m HD TSV under development

J. J. Suarez Berru , 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023, pp. 97-102,

Chiplet approach: Heterogenous IC design

- Interposer & chiplets
 - − Interconnects performance \rightarrow R.C delay
 - Exceeding latency & bandwidth limits
 - Cost/form factor advantages
- Appropriate partitioning
- Heterogeneous IC design
 - Optimized technology for each function
 - specialization by app.: CPU, GPU, AI (...)
 - Standardization (coming soon, hopefully)

The end of "all for the SoC" paradigm (image from DARPA)

Chiplet topology on interposer

HPC and AI converging roadmaps

Metallic Passive interposer

✓ Chip-to-chip side-by-side communication

Active interposer (ENoC) Intact

 Extended communication capability (increased distance, routing, power management, ...)

Photonic interposer (ONoC) Starac

Optical communication:

- ✓ Reduction of on-chip latencies
- ✓ Higher throughput
- ✓ Lower energy consumption
- ✓ Scalability

More than 12 years expertise on Silicon Interposers

Y. Thonnart et al., "POPSTAR: a Robust Modular Optical NoC Architecture for Chiplet-based 3D Integrated Systems," Proc. DATE, 2020, p. 6. D. Saint Patrice et al, "Process Integration of Photonic Interposer for Chiplet-Based 3D Systems" Proc. IEEE ECTC, 2023

Active interposers (INTACT)

life.auamentec

- 1st functional architecture with active interposer
 - Si interposer: 65nm including TSV middle 10x100 μ m
 - Chiplets FDSOI 28nm
 - State of the art 20 μm pitch Cu pillars (diam. 10 μm)
 - High performance 3D connecting between chiplets and DC/DC convertors

D. Lattard et al., 3DIC 2016 E. Guthmuller et al., ESSIRC 2018 D. Dutoit, D43D 2018 P. Coudrain et al., ECTC, 2019

20 19 NANDELEC

Interposer level optical links for HPC

Architecture

ONoC Popstar Interposer

Co-Integration & test

Co-integration TSV mid (12x100µm) and photonic FEOL after Metal 1

3D Assembly

Silicon Photonic Interposer front side: 4 chiplets and 6 electro-optical drivers in 28nm FD-SOI

Full demonstration

expected in 2025

- 4 x 16 cores FDSOI 28nm Chiplet
- 6 electro-optical drivers (Rx/Tx) in 28nm FDSOI
- Silicon photonic interposer: Full integration @CEA-Leti

Leti Quantum interposers

UBM

MET2 NbN

Dielectrics

Vias

Ti/TiN/W

100 µm

C. Thomas et al., Materials for Quantum Technology, 2, 3, 035001, (2022)

500 nm

٠

Ο

 \bigcirc

 \bigcirc

Ο

 \bigcirc

 \mathbf{O}

More Moore : Wafer level chip architecture

Minimized TSV footprint on active devices

Heterogeneous Integration of advanced in

Combination of DTW + TSV (Mid or HD)

TSV HD + W2W allows many active layers wafer

Interconnection density increase (x, y z)

Power delivery network

Applications HPC & IA

More than Moore : system level

Heterogeneous compute chiplets:

- Advanced node (7nm, 5nm)
- Heterogeneous (size, pitch, node)
- Full digital compute chiplet
- Optional: TSV HD for memory cube
- Face down

3D assembly:

- Die-to-Wafer
- Hybrid Bonding
- Face-to-Face

Base die:

- Mature node (FD28, GF22FDX,...)
- Face up
- TSV for power delivery and los (preferred mid process)

EU – INDIA – Joint Researchers Workshop on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu