Driving Net-Zero with GaN: Advancing Power and RF GaN Technology through Industry-oriented Models for Foundry & Circuit Designers

ICOS Workshop 2024 Athens, Greece 14 May 2024

Sheikh Aamir Ahsan

Nanoelectronics R&D Group Department of Electronics and Communication National Institute of Technology Srinagar (NITSRI)

Outline

- Net Zero and Background Global landscape Indian initiatives
- GaN forecast
- State-of-the-art
- Models ASM-GaN NITSRI-GaN
- Call to Action
- Summary

Where we are located - NITSRI

Background:

Global and Indian Perspective

Net Zero – Call for action

"Cutting greenhouse gas emissions to as close to zero as possible, with any remaining emissions re-absorbed from the atmosphere, by oceans and forests"

Top 5 emitters^[1]: China, US, India, EU, Russia Limit the global warming to 1.5°C w.r.t pre-industrial levels – Paris Agreement ^[2] (2015)

Global energy sector ^[3]

- ✓ Renewables
- Energy efficiency
- Electrification
- ✓ Hydrogen based fuels

[1] www.un.org/en/climatechange/net-zero-coalition

[2] <u>www.un.org/en/climatechange/paris-agreement</u>

[3] Net Zero by 2050: A Roadmap for the Global Energy Sector, International

Energy Agency, Paris, [Online] iea.org/reports/net-zero-by-2050, May 2021.

[1] Press Information Bureau, Min. Environment, Forest and Climate Change, 1847813, Aug 2022.

[2] "Net Zero by 2050: A Roadmap for the Global Energy Sector", International Energy Agency, Paris, May 2021.

[3] "The Long-Term Strategy of the US: Pathways to Net-Zero Greenhouse Gas Emissions by 2050", US Department of State and the US Executive Office of the President, Nov 2021.

[4] "India's Long-Term Low-Carbon Development Strategy", **Min. Environment, Forest and Climate Change, Gov. of India**, Aug 2022

[5] "India's Race to Net-Zero", Sgurr Energy, 2023

Our Commitment

India SemiCon Landscape - 2024

• Semiconductor Market – 34B (2023) \rightarrow 100B (2032)

Three semiconductor manufacturing units (\$15B Investment):

1. Semiconductor Fab with 50,000 wfsm capacity – at Dholera, Gujarat Tata Electronics Private Limited (TEPL) will collaborate with Powerchip Semiconductor Manufacturing Corp (PSMC), Taiwan

2. Semiconductor ATMP (Assembly, Test, Marking and Packaging) unit – at Morigaon, Assam
48 million per day, catering to segments such as automotive, electric vehicles, consumer electronics

3. Semiconductor ATMP unit for specialized chips – at Sanand, Gujarat CG Power, in partnership with Renesas Electronics, is responsible for consumer, industrial, automotive, and power applications, with a capacity of 15 million per day.

• **300 thousand** jobs created by 2026

MINISTRY OF ELECTRONICS AND INFORMATION TECHNOLOGY

(IPHW Division)

NOTIFICATION

New Delhi, the 4th October, 2022

- Subject:Modified scheme for setting up of Compound Semiconductors/ Silicon Photonics / Sensors Fab/Discrete Semiconductors Fab and Semiconductor Assembly, Testing, Marking and Packaging
(ATMP)/ Outsourced Semiconductor Assembly and Test (OSAT) facilities in India
- Indian Semiconductor Mission Compound Semiconductor and associated fabs^[1]
 - SiC, GaN and other WBG materials
- GaN^[2] and other Wide-bandgap tech GaN to a market of \$ 2 billion by 2027^[2]
- Electric mobility, consumer and industrial sector GaN power electronics^[2] and 5G
- GEECI^[3] Gallium Nitride Ecosystem Enabling Centre and Incubator

[1] Modified scheme for setting up of Compound Semiconductors, **Gazette of India**, CG-DL-E-06102022-239341, Oct 2022

[2] Power GaN: the next wave, **Yole Group**, Jun 2022

[3] <u>www.geeci.in</u>

GaN Technology:

Forecast and State of the art

GaN Material Properties +

[2] M. A. Briere, Tech. Rep., International Rectifier, Dec. 2008

GaN RF Projections

GaN Power Projections

Power GaN, Yole Development, Dec 2022

Conventional Structure and Substrate

Sapphire: good from strain perspective, bad thermal resistance

Si: cheap, large wafer size, abundant

SiC: expensive, less defects, limited wafer size, supply

S. Huang, Jap. J. Appl. Phys., 47 (10), 7998, 2008

S. L. Selvaraj et al., Proc. DRC, 53, 2012

Gate Leakage and Vth Instability

Double Channel – Minimize Leakage

[1] Feng et al., IEEE Electron Device Lett., 44 (10), Oct. 2023

Active Passivation pGaN – Dynamic Ron

[1] Cui et al., IEEE Electron Device Lett., 45 (2), Feb. 2024

Power GaN integration: BiGaN, pFET, Vertical GaN

[1] Wang *et al.*, **IEEE Electron Device Lett.**, 42 (9), Sep. 2021
[2] Wang *et al.*, **IEEE Electron Device Lett.**, 45 (3), Mar. 2024
[3] Hamdaoui et al, **Appl. Phys. Express**, 17, 016503, 2023

RF GaN – Graded structures

19

Modeling GaN

L. Dunleavy, IEEE Microw. Mag., 2010

U. Radhakrishna et al, **IEEE IEDM**, 2014

Advanced SPICE Model – Standard

IIT Kanpur and UCB

- Drain current expression
 - Using drift-diffusion framework
 - Nonlinear access region resistances

$$I_{ds} = \frac{\mu_{eff}}{\sqrt{1 + \theta_{sat}^2 \psi_{ds}^2}} \frac{W}{L} C_g N_f \left[V_{go} - \left(\frac{\psi_s + \psi_d}{2}\right) + V_{th} \right] \times \psi_{ds} (1 + \lambda V_{ds})$$

Khandelwal et al, IEEE Trans. Electron Devices, 2013 Ghosh et al., IEEE EDSSC, 2016

Well defined extraction procedure

Ahsan et al, MOS-AK Workshop, Shanghai, 2016

[1] Ahsan *et al.*, IEEE Trans. Electron Devices, 62 (2), 2016
[2] Ahsan *et al.*, IEEE Trans. Electron Devices, 63 (3), 2017

Modeling Traps

Pulsed-IV Scheme used to simulate the P-IV Characteristics in IC-CAP

Pulse Width -200 ns, **Duty-cycle** -0.02 %

Ahsan et al, IEEE J. Electron Devices Soc. 2017

ASM for GaN RF

• Model

26

- Core surface potential based kit
- Access region resistances included in core
- Bus-inductances in extrinsics

RF Extraction & large-signal model

Statistical Simulation - Variability

28

No. of Monte Carlo Trial

RF Variability results

Pout, Gain & PAE & Idd for 250 trials of MC & measured data for a batch of 10 devices

29

NITSRI-GaN Class of Models

p-GaN HEMTs

Z. Bhat et al, IEEE Trans Electron Devices, vol. 71, no. 3, Mar. 2024

GaN p-Channel FETs

GaN complimentary FETs

p-channel counterpart

Z. Bhat et al, IEEE Trans Electron Devices, vol. 71, no. 3, Mar. 2024

Efforts towards open-source / free mode

- Implementation of the Verilog-A model in free softwares LTSPICE, Microcap, PSPICE libraries
- This feature is not available in the standard CMC ASM

Transients Behavior

Call to action – the value huddle

Governments: Joint undertakings and policy

Academic Researchers & R&D Orgs: New Technology Development

and Transfer

GaN Industry:

Foundries and Appl. developers

Sub-systems and Tech Industry: Automotive, Consumer, Comm

Open-Source:

Design frameworks & Models

Summary

India and EU common goal towards Net-Zero GaN – promise in the **RF** and **power electronics** market **Device topologies** pGaN, Cascode, Double Channel, Active Passivation etc Graded buffer - linearity Models – Industry Standards: MIT VS, Angelov ASM: Surface-potential (Physics-based) NITSRI GaN Class of Models Essential to have **open-source** models Joint initiative between different stakeholders

Dr. Francis Balestra INPACF Indo-Pacific-European Hub for Digital Partnerships

शिक्षा मंत्रालय **MINISTRY OF EDUCATION**

सत्यमेव जयते

Department of Science & Technology, Government of

सत्यमेव जयते

Thank You!