

Low-energy Integrated ular Sensing Systems for -based Health Monitoring Breath-Ken Uchida (SDRJ MtM Leader) **Department of Materials Engineering** The University of Tokyo national Cooperation on Semiconductors (ICOS) Workshop: Challenges in advanced computing and functionalities, International Cooperation, May 13-14, 2024, Athene, Greece Acknowledgement : This project is supported by JST-CREST (Grant # JPMJCR1331, 19I2) 科研費

and JSPS KAKENHI Grant Number 19H00756, 18H05243.

ICOS Workshop 2024

Background: DX and IoT

In order to drive the Digital Transformation (DX), robust sensors that can be used repeatedly over an extremely long period of time are demanded.

Target: Chemical Substances

Chemical Sensor

Open question

Is it possible to realize a chemical sensor (molecular sensor) with molecular discrimination ability which can be repeatedly used for an ultra-long period of time at low energy?

Breath Diagnostics

- Human breath contains more than one thousands of compounds.
- Many compounds are by-products of metabolic processes.
- Some compounds are related to diseases and thus detection of these compounds make it possible to realize non-invasive diagnosis.

VOC	Disease		
Acetone	Diabetes mellitus		
Ammonia	Renal disease		
Methane, <mark>Hydrogen</mark>	Colonic fermentation		
Isoprene	Hyperlipidemia		
Nonanal etc.	Lung cancer		

It is required to detect very small amounts of molecules in real time from exhaled *breath with high relative humidity* ~ 90% (30,000 ppm).

Low-energy Molecular Sensor By Joule Heating

Objective: Localization of heat in space

Increase the temperature only where necessary.

Precisely control the temperature at any location at any time interval.

Objective: Localization of heat in time

Heat up the device during necessary time.

The temperature at any time can be precisely controlled.

- Pt Nanosheet: H₂ Sensing in Breath
- Integrated Pt & PtRh nanosheets: H₂ & NH₃ Sensing
- Graphene Multi-functional Sensor: H₂ & H₂O Sensing
- CoOEP-functionalized Graphene Sensor: NH₃ Sensing in Breath

Pt Nanosheet Hydrogen Sensor

Platinum Nanosheet Sensor: Structure

T. Tanaka et al., Sens. Act. B, 258, 913-919 (2018).

- 5-nm-thick Platinum (Pt) film with thick Al contact pads.
- The thickness of Pt is relatively uniform.
- There are some cracks. However, not dots but film is formed.

Hydrogen Concentration Dependence

T. Tanaka et al., Sens. Act. B, 258, 913-919 (2018).

Pt nano-sheet sensors detect H_2 ranging from 0.5ppm to 100 ppm. The response to H_2 concentration is almost linear and is not affected by the relative humidity.

Mechanisms: Carrier Scattering at Surface

PDOS is much higher at oxygen-terminated Pt surfaces than at hydrogen terminated surfaces. Larger PDOS results in higher scattering rate of electrons. Thus, the resistivity is higher when the surface is terminated more by oxygens.

Integrated Nanosheet Sensors

Array of polycrystalline metal nanosheets were fabricated.

T. Tanaka et al., IEEE Trans. Electron Dev., 66, 5393, 2019.

Integration of two kinds of nanosheet sensors

T. Tanaka, et al., IEEE Trans. Electron Devices 66, 5393 (2019).

The Pt nanosheet and PtRh nanosheet were operated at their respective optimum temperature

Response of each sensor to H₂ and NH₃

Responds to NH₃

Does not respond to NH₃

Pt nanosheets and PtRh nanosheets respond differently to ammonia

Identification of Concentration of Each Molecular Component in Mixed Gas

Five combinations of H₂ and NH₃ concentrations were tested.

Successfully discriminated H₂ and NH₃ concentrations in gas mixtures

Au Nanosheet H₂S Sensor: Response & Selectivity

T. Kato et al., ACS Sens., 9, 708–716 (2024).

湿度や呼気中に多く含まれる夾雑ガスに対して不感であり, すなわち選択性が高い.

H₂S Concentration Measurement in Breath

Sensitive to hydrogen sulfide in exhaled breath.

T. Kato et al., ACS Sens., 9, 708–716 (2024).

	Sample	Au NS Sensor (ppb)	GC (ppb)	Δ(GC-Au NS)/GC (%)
	#1	74.6	175	57.4
	#2	340	382	11.0
2024/5/22	#3	721	933	22.7

Pd-Functionalized, Suspended Graphene Nanosheet for Fast, Low-Energy Multimolecular Sensors

Multi-Functionality by Joule Heating

Low Temperature

Water adsorption on Pd NDs

High Temperature

Hydrogen dissociation on Pd NDs

By increasing the temperature by Joule heating, Pd nanodot catalysts are activated.

Suspended Graphene: Heater vs Self-Heating

The temperature of graphene should be increased, based on sensing data at different biases and temperatures.

However, because of the cooling effect by Au electrode, much smaller ΔT was estimated from simple model.

Interface between graphene and gold electrode

T. Yokoyama et al., ACS Appl. Nano Mater., 1, 3886, 2018.

Self-Heating is successfully achieved in suspended graphene. Hydrogen in humid air is detectable with low energy.

Demonstration of Multi-molecular Sensor

10-ppm hydrogen in synthetic breath is detected.

T. Yokoyama et al., ACS Appl. Nano Mater., 1, 3886, 2018.

Single self-heated sensor can detect two types of molecules (Water and hydrogen) by modifying input voltage.

Cooperation is necessary

Design Tool for Sensors

- First-principle calculation
- Molecular dynamics
- Thermal properties
- Reliable material parameters
- Fabrication Process
- Data Analysis

Summary

- Joule self-heating is effective to realize low-power, highly-sensitive sensors.
- Low-concentration H₂ in wet air & breath are detected by Pt resistive sensor.
- Gas sensors operating at different temperatures were integrated (Pt & PtRh resistive sensors). Low-power and ppm-level H₂ and NH₃ gas sensing was realized.
- Highly selective Au nanosheet H2S sensors were developed.
- By utilizing Joule self heating, multifunctional suspended graphene sensors were realized.

Self-heated nano sensors are promising to drive DX and to realize IoT society.