

Challenges in Advanced Computing and Functionalities International Cooperation on Semiconductors

Presentation of the preliminary ICOS results on International Technology Highlights on Advanced Functionalities

Jyrki Kiihamäki, VTT, Co-creation manager Markus Pfeffer, Fraunhofer IISB, Prototype Fab Management

Outline

- Overview of current trends and challenges
- Deep Dive
 - Sensors
 - Semiconductor-based photonics
 - Energy harvesting
 - Power devices
- Short Screening of research activities in other areas of advanced functionalities
- Conclusion and first ideas for potential fruitful research collaboration

Overview of current trends

Trends and drivers

- **Digitalization**, analogue measurement results are immediately digitized on-site
- Wireless connectivity for IoT devices, easy, low cost installation of sensor devices
- Autarctic systems, wireless connectivity and (desired) freedom from disposable batteries increase the need for energy harvesting
- Access to powerful computation (Edge) AI increases the usage for data producing sensors
- Fusion of sensor data from different sources enable new, improved, smarter data to be available for users
- **Data security and reliability**, data should be accurate and reliable, it should not be available to wrong hands, ...
- Electrification of transportation and energy conversion require efficient power devices

Applications 1/2 Denited States EU China Japan

by statista

- Automotive/Transport (perception)
- Health / Well being / Vital Signs

Market size: global

Applications 2/2

• Environmental /Built environment

(1) CAGR: Compound Annual Growth Rate

Sources: Statista Market Insights 2023

- Industry / Robotics
- Aerospace/Defense/Security

volume forecast in billion

Notes:

Consumer 19.5 20 Number of consumer devices connected to the IoT 17.3 IoT 15.3 15 13.6 11.7 10.0 10 8.3 7.0 5.3 4.7 5 0 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

Market Insights

by statista

 \bullet

- Inertial sensors (accelometers, gyroscopes)
 - Bosch, STM, Murata
- Acoustics (microphones, loudspeakers, ultrasonic transducer)
 - Piezoelectrically driven MEMS are emerging
- Photonics/imaging (camera, spectral sensing, hyperspectral, lidar, ...)
- RF (radar, JCAS)
- Others (temperature, pressure, flow, ...)

EU market

Description of the semiconductor demand in the EU by application and products

- 38B€ semiconductor market
- 19% of that is opto & sensors
- European strength (Bosch, STM, ...)

International Cooperation On Semiconductors

International comparison

- Relative strength of different countries in sensing technologies
- Scoring 1-5, -1= no data
- (data picked from presentation by Paolo Motto Ros at ICOS workshop January 2024)

Sensors

Semiconductor-based photonics

Wim Bogaerts (U Ghent)

ICOS WORKSHOP – May 13-14th 2024, Athens – EUROSOI-ULIS Conference

9 of 12

Photonic Integrated Circuit

PICs can be made in many materials

- III-V platforms are still dominant
- Silicon Photonics is driving the growth

The driver today: Data Centers

For a typical data center:

- 100K to 1M servers
- multiple optical fiber connections per server
- 100's MWatt energy consumption

2021-2027 SILICON PHOTONIC DIE FORECAST BY APPLICATION

Source: Silicon Photonics 2022 Report, Yole Intelligence, 2022

Summary

- Silicon photonics rides on the developments of CMOS
- The main driver today is transceivers (mostly US and Asia)
- No high-end, high-volume foundries in Europe
- Europe has great R&D, design tools, packaging, ...
- Performance needs are driving heterogeneous integration

Some challenges

- Sensors
 - **Design tools**, sensor design requires multi-physics simulation in challenging geometrical dimensions and scales
 - **Packaging and integration**, sensors can be sensitive to packaging and interferences. Materials properties sometimes not known well enough. Some packaging technologies and materials not easily available in Europe.
 - Market is fragmented to small segments, sometimes cost of sensor design, manufacturing and packaging is prohibitely expensive
- Photonics
 - III-Vs still needed for light sources
 - Photonic packaging is difficult and expensive
 - Long product development cycles

Energy Harvesting: review of the main EU and international activities and technologies

Gustavo Ardila (IMEP-LaHC)

Energy Harvesting - Importance

- Market growth on connected devices : IoT (estimated 40 billion devices by 2025), healthcare, wearables, home • automation...
- Energy supply is essential (<mW, tens of μ W)

- **Energy Harvesting**
- EH is important in applications with specific requirements : simple battery is not enough, cords would increase • the cost / complexity, too many devices, harsh environment, implants...

Energy Harvesting – Possibilities

Mechanical EH: Most active universities / RTO

International Cooperation

Thermal EH: Most active universities / RTO

Photovoltaic EH: Most active universities / RTO

RF EH/wireless power transfer: Most active ...

International Cooperation

Micro-power management: Most active ...

Energy Harvesting - Summary

- The improvement of the EH performance/efficiency is as important as the development of "green" materials. Replacing toxic/rare materials used nowadays (lead based piezoelectrics, Bi₂Te₃ for thermoelectrics, NdFeB neodymium, for electromagnetic conversion).
- The use of nanotechnologies is foreseen to increase the performance of all the concepts in general.
- Flexible and low cost approaches for wearable applications (i.e. e-health) should be developed as well.
- The comprehensive system design combining all aspects of the fabrication process, harvester structure, power conversion circuits and storage will be the potential solution for increasing the power generation efficiency.

Energy Harvesting - Contributors

International Roadmap for Devices and Systems MORE THAN MOORE WHITE PAPER

- **Gustavo Ardila**, Grenoble Alpes Univ./Grenoble INP (Team leader)
- Aldo Romani, IUNET/Univ. of Bologna (co-leader)
- Hiro Akinaga, National Institute of Advanced Industrial Science and Technology (AIST)
- Philippe Basset, Univ. Gustave Eiffel
- Alessandro Bertacchini, IUNET/Univ. of Modena and Reggio Emilia
- Alessandra Costanzo, Univ. of Bologna
- Mike Hayes, Tyndall
- Maciej Haras, Warsaw Univ. of Technology
- Anne Kaminski, Grenoble INP

Energy Harvesting team

- Michail Kiziroglou, Imperial College London
- **Ivona Mitrovic**, Univ. of Liverpool
- **Yoshiyuki Nonogushi**, Kyoto Institute of Technology
- Alessandro Piovaccari, Univ. of Bologna
- **Kafil M Razeeb**, Tyndall
- James Rohan, Tyndall
- **Saibal Roy**, Tyndall
- **Thomas Skotnicki**, Warsaw Univ. of Technology
- Hiroshi Toshiyoshi, Univ. of Tokyo
- Eric Yeatman, Imperial College London

Power Devices: review of the main EU and international activities and technologies

Mikael Östling KTH Royal Institute of Technology, Markus Pfeffer Fraunhofer IISB

Our Great Societal Challenge

ICOS WORKSHOP – May 13-14th 2024, Athens – EUROSOI-ULIS Conference

Devices.

B.J. Baliga, Advanced High Voltage Power Device Concepts, Springer

Power Devices - Introduction

- Energy efficiency contributes to EU's CO₂ goals
 - Ecological and economical implications
 - Laws and regulations (compare Monitors)
 - Prestige and responsibility for companies
- SiC (WBG) converters offer excellent partial load properties
 - Up to 10% more efficiency compared to silicon topologies
 - Every time energy is transferred
 - Generation
 - Storage (Recuperation)
 - Consumption
 - Applicable to any source of electrical energy consumption (broad range)

Greenhouse gas emission trends Emissions, projections and targets for the EU

Materials Properties of SiC

high frequency, current density

International Cooperation On Semiconductors

- Task 1: Reduction of On-State resistance to minimize die size/cost
 - Technology development depends on voltage rating

Power Devices on SiC

• Bipolar and MOS Power Devices

Power Devices on SiC

• Advanced Trench Technologies

FIB cross-section of active area

Blocking voltage in V

Electrical Performance

Evolution of Power SiC MOS Technolog

- Task 1: Reduction of On-State resistance
 - Implementation of trench gates

n-Drift regio

- Increased channel mobility along (1 1 -2 0) orientation
- Vertical channel → Pitch reduction compared to VDMOS

o-Well

Shielding of trench bottom oxide vital!

Source Electrode

Oxide

n[⁺]-Substrate

Drain Electrode

Rohm / MaxPower Double Trench

Banzhaf et al. MSF 858 (2016) 848-851

Examples of practical SiC Trench MOS concepts

- Challenges for further advancements
 - Unipolar high voltage devices
 - Superjunction device topology using vertical pillar structure (approx. 60μm @ 10kV)
 - Concepts (similar to Infineon / Toshiba solutions in Silicon):
 - Mid-energy ion implantation and epitaxial overgrowth (rinse & repeat)
 - High-energy ion implantation (e.g. filter implantation)
 - Deep trench etching and epitaxial refill

The WBG Device Landscape

Market Outlook

Market Outlook

Scale of Global Market for SiC Power Device (Million USD)

Annoucements (some examples)

International Cooperation On Semiconductors

Research activities in other areas

- SiC CMOS Technology for harsh environments
- EU Chips Act Pilot Line(s)
- Ultra Wide Band Gap semiconductors (UWBGs)

• Operation > 500°C

reliability

Technology overview

ICOS WORKSHOP – May 13-14th 2024, Athens – EUROSOI-ULIS Conference

Cross-

• CMOS inverters up to 550 °C

Integrated Digital and Analog Circuit Blocks in a Scalable Silicon Carbide CMOS Technology

Romijn et al. IEEE Transactions on Electron Devices, 2022

ICOS WORKSHOP – May 13-14th 2024, Athens – EUROSOI-ULIS Conference

- 200 C

Read mode

10

Q [V]

(b)

(d)

rSNM

15

rSNM

in cooperation with

5

10

Q [V]

(c)

SiC Smart Power Integration

in cooperation with UNIVERSITY OF ARKANSAS

- Access
 - Customer designs are combined in a mask set and processed jointly
 - Process cost are distributed according to areal share
 - Each customer gets delivered single chips of their layout
 - Allows for participation in CMOS process flow starting from approx. 5% of total processing cost

EU Commissioner for the Internal Market, Thierry Breton, spoke of Europe's ambitions to be an industry front-runner, with capabilities in advanced technologies as well as in existing strengths. He praised the world-beating 11 billion euros of investment in R&D through the Chips JU, and confirmed the creation of a European cloud-based design platform and four new pilot lines. These lines will bridge the gap from the lab to the fab in four critical and strategic technologies:

- Extending Moore's law to the Angstrom area
- Scaling down towards 7 nm in FD-SOI technology
- The integration of several heterogeneous technologies and advanced packaging
- Next-generation wide-bandgap materials

Ultra Wide Band Gap semiconductors (UWBGs) are superior to Silicon

due to their physical properties in the field of power electronic applications

		WBGs		Ultra WBGs			
	Silicon	4H-SiC	GaN	Ga2O3	Diamond	AIN	
Bandgap E _g [eV]	1.1	3.26	3.45	4.85	5.47	6.2	
Melting Point [°C]	1420	-	-	1795	-	-	
Electron Mobility µn [cm²/Vs]	1350	900	1000	150	4000 (th.)	500	-
Dielectric constant ϵ	11.8	9.7	9.5	9.9	5.5	9.1	E.
Thermal Conductivity k [W/cmK]	1.56	3.7	1.5	0.1	25	3	
Critical Electrical Field E _{cr} [10 ⁶ V/cm]	0.2	3.2	3.3	8	10	16.6	

Device performance

- Drastically lower transmission losses
- Outstanding dynamic properties

System benefits

Higher efficiency

More compact systems including simpler cooling and smaller passive components

Reduced costs at system level

WBG Pilot Line

Chips-CPL-4: Pilot line on advanced semiconductor devices based on Wide Bandgap materials:

It will focus on two key outcomes:

(*i*) to extend the maturity level and the impact of *SiC and GaN technologies*; and

(ii) to *explore less mature WBG and UWBG semiconductors*, such as cubic polytype of SiC (3C–SiC), low–cost polycrystalline SiC, lattice–matched InAlN or InAlGaN for RF heterostructures, bulk gallium nitride or gallium oxide (Ga₂O₃) or aluminium nitride (AlN).

Vision of the WBG Pilot line:

The R&D activities aim to improve the efficiency and power density capabilities of WBG–based power devices must cover the entire chain, from the crystal growth to the front–end, testing and back–end technology

General idea, vision and topical coverage of the WBG Pilot Line

Income prospect of WBG PL business model

WBG Pilot Line - contribution by FhG-IISB

Ultrawide band gap semiconductors for next generation power devices = UWBG4NGP

Lab2Fab initiative for a faster bridging of the "valley of death"

The German contribution aims to fulfil the following targets:

- Creation of synergies within Germany and Europe for AIN but also GaN and Ga2O3 based device supply chains
- Capabilities inside Europe for technology development of power devices based on UWBG materials on low TRL level like AlN, unlock the potential of these new semi-conductors and raise their maturity. → Lab2Fab
- Ensuring the availability of AIN wafers and related process equipment from within Europe
- Securing technology autonomy for AIN and leading the way for Next-Generation Power Semiconductors in Germany

Planned timeline and outcome for AIN inside PL4 by FhG-IISB

AlN will be very far-reaching and AlN will be able to function as a next-generation semiconductor with a wide range of applications in automotive and industry such as:

- Electronics for extreme environmental conditions such as radiation-resistant and cold electronics for satellites, aerospace, and quantum electronics
- Energy-efficient power electronics for automotive and data centers
- Power Transistors for radio frequency (RF) and communication applications
- Energy-efficient UVC LEDs for disinfection purposes

Summary – Power Devices

- Global research and development in the field of advanced power devices
- Investments are on the way
- Market for WBG (SiC, GaN) and UWBG (AIN, Ga₂O₃, diamond)
- Enable Access via Pilot Lines for universities, SMEs and fast followers
- Electronics for harsh environment
 - Available via EUROPRACTICE

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

icos-semiconductors.eu

ICOS WORKSHOP – May 13-14th 2024, Athens