

Artificial Neuron Devices Fully Compatible with CMOS Technology for Neural Processing and Sensing in Neuromorphic Hardware

The 1st ROK-EU Semiconductor Researchers Forum

Joon-Kyu Han Assistant Professor at System Semiconductor Engineering and

Department of Electronic Engineering, Sogang University

- Introduction
- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Introduction

- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Introduction Software based deep learning

von Neumann architecture

von Neumann bottleneck

- memory wall problem
- high energy consumption (62.7 % of total energy is consumed by data movement)

Introduction Explosion of data

ChatGPT (Hyper-scale AI) : 570 GB data & 175 billion parameters

Introduction Importance of energy efficiency

• New computing architecture is needed for mobile & edge devices

Introduction Hardware based neuromorphic computing

	Human brain	Software based deep learning	Hardware based neuromorphic computing
Target	Biology	Deep neural network (DNN)	Spiking neural network (SNN)
Components	Neuron array	Von Neumann architecture	Neuron array
	Synapse array		Synaptic device array
Learning algorithm	STDP ¹ , SRDP ²	Back-propagation	STDP ¹ , SRDP ²
Power consumption	Extremely low	High (212 J/image)	Low (0.0004 J/image)
Maturity	Extremely high	High	Low

¹STDP: spike-timing-dependent plasticity ²SRDP: spike-rate-dependent plasticity

Introduction Hardware based neuromorphic computing

- Neuron: Leaky integrate & fire (LIF)
- Synapse: Potentiation & depression

Introduction Neuron in neuromorphic hardware

 Neuron receives signals from previous synapses and produces an output spike when the membrane potential reaches a threshold

Introduction Neuron in neuromorphic hardware

*OTS: Ovonic Threshold Switch

*MOSFET: Metal-oxide-semiconductor field-effect transistor

- Introduction
- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Artificial neuron based on a single MOSFET Single transistor latch (STL) phenomenon

*HRS: high resistance state, LRS: low resistance state, V_{latch} : latch-up voltage

Artificial neuron based on a single MOSFET Mechanism of neuron operation

-13/30-

Artificial neuron based on a single MOSFET Neuron operation

Neuron operation was achieved with a single MOSFET

THS CONTRACT

Artificial neuron based on a single MOSFET Various structures

J.-K. Han *et al., IEEE Electron Device Letters*, 2020 Planar MOSFET (single gate)

J.-K. Han *et al., IEEE Electron Device Letters*, 2021 Planar MOSFET (double gate)

J.-K. Han *et al., Small*, 2021

Vertical MOSFET

J.-K. Han et al., IEEE Transactions on Electron Devices, 2021

Multi-bridge-channel MOSFET

- Introduction
- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Co-integration of neuron device and synaptic device **Research concept**

• Enhance packing density, reduce chip cost, simplify fabrication, reduce energy consumption & delay at interfaces

Co-integration of neuron device and synaptic device **2D integration**

J.-K. Han et al., Science Advances, 2021

• Neuron, synapse, and CMOS interface circuit can be co-integrated in a 2D plane with the same process

-19/30-

Co-integration of neuron device and synaptic device **3D integration**

J.-K. Han et al., Advanced Science, 2023

• Neuron and synapse can be 3D integrated with higher density

Co-integration of neuron device and synaptic device **Applications**

Face recognition

Sign language recognition

- Introduction
- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Artificial sensory neuron for in-sensor computing Smart sensors

 Smart sensors can recognize/classify images, gases, chemicals, etc. with high accuracy by AI

Artificial sensory neuron for in-sensor computing In-sensor computing

Y. Chai, Nature Electronics, 2020

- Bottleneck exists between the sensor and external neural network
- In-sensor computing can remove bottlenecks

Artificial sensory neuron for in-sensor computing Neuromorphic sensory system

 Various stimuli (light, gas, chemical, pressure, etc.) should be encoded into electrical spike signals
→ Mimicry of biological sensory neuron

Artificial sensory neuron for in-sensor computing Artificial visual sensory neuron

*V*_{latch} & *V*_{T,firing} can be reduced by light illumination
→ spiking frequency increases

Artificial sensory neuron for in-sensor computing Artificial visual sensory neuron

• The operation of an artificial visual sensory neuron was achieved with a single MOSFET

Artificial sensory neuron for in-sensor computing Artificial sensory neuron for five senses

-27/30-

- Introduction
- Artificial neuron device based on a single MOSFET
- Co-integration of neuron device and synaptic device
- Artificial sensory neuron for in-sensor computing
- Conclusion

Conclusion Summary of research

IHS T

- Neuromorphic hardware can greatly reduce the energy consumption for AI
- Highly scalable neuron device based on a single MOSFET was demonstrated
- <u>2D & 3D co-integration of neuron device and synaptic device</u> were demonstrated
- <u>Artificial sensory neuron</u> devices that can act as an input neuron for insensor computing were developed
- <u>High packing density and reduction of energy consumption</u> can be achieved

Thank you very much for your attention