

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Jose H Garcia

Senior Researcher

Catalan Institute of Nanoscience and Nanotechnology

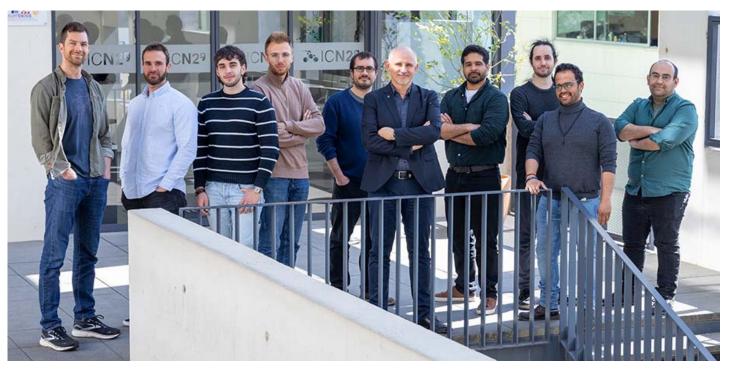
Brussels (Belgium) March 25-26, 2024

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Jose H Garcia

In Semiconductors

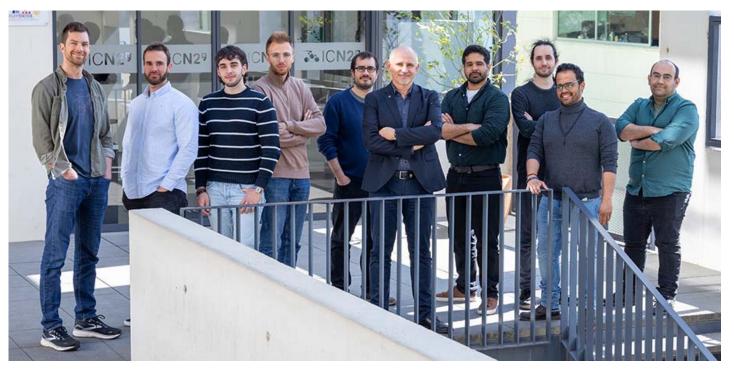
The Catalan Center of Nanoscience and Nanotechnology (ICN2)

European Commission


Barcelona, Spain

Advanced quantum mechanical simulations

- Disordered materials:
 - Amorphous dielectrics
 - Nonvolatile SOT-MRAM
- Topological quantum devices.
- Quantum device simulations



Theoretical and Computational Nanoscience group

Advanced quantum mechanical simulations

- Disordered materials:
 - Amorphous dielectrics
 - Nonvolatile SOT-MRAM
- Topological quantum devices.
- Quantum device simulations

Multiscale data-driven simulations

Energy on validation data

RMSE:

-200

RMSE:

20

0.647eV/Å

0.037eV/atom

-300

-20

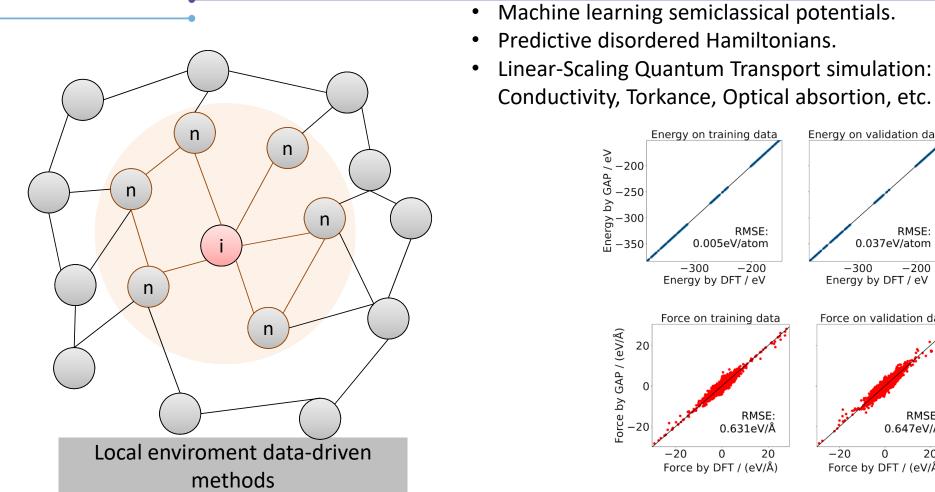
Energy by DFT / eV

Force on validation data

0

Force by DFT / (eV/Å)

RMSE:

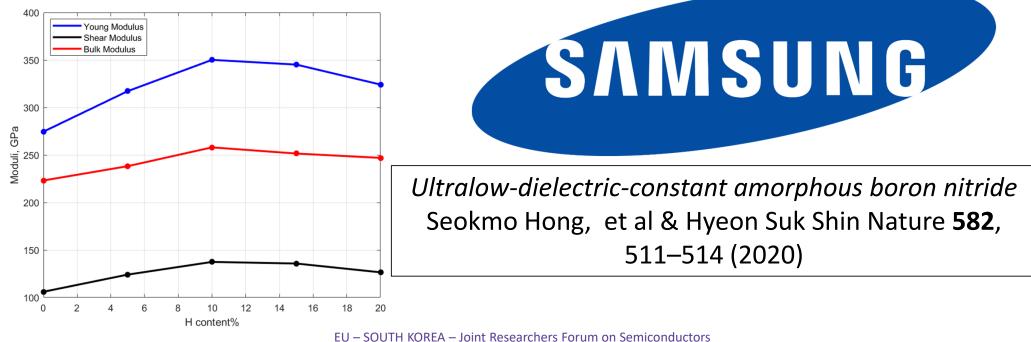

-200

RMSE:

20

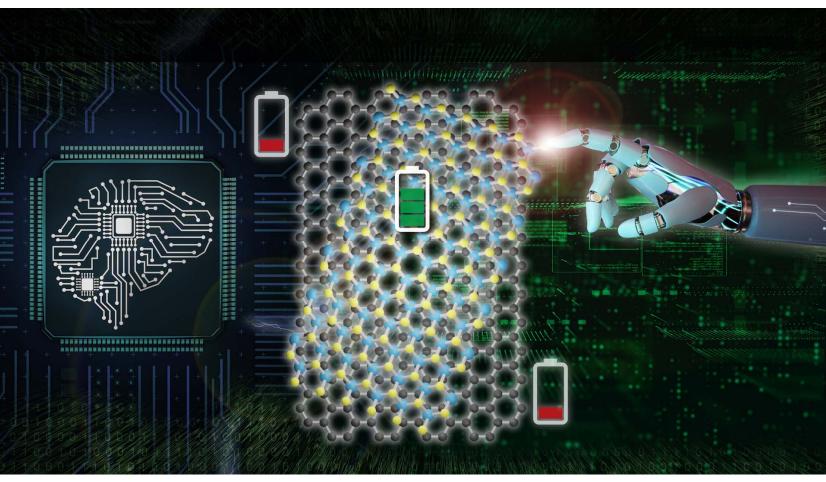
0.631eV/Å

0



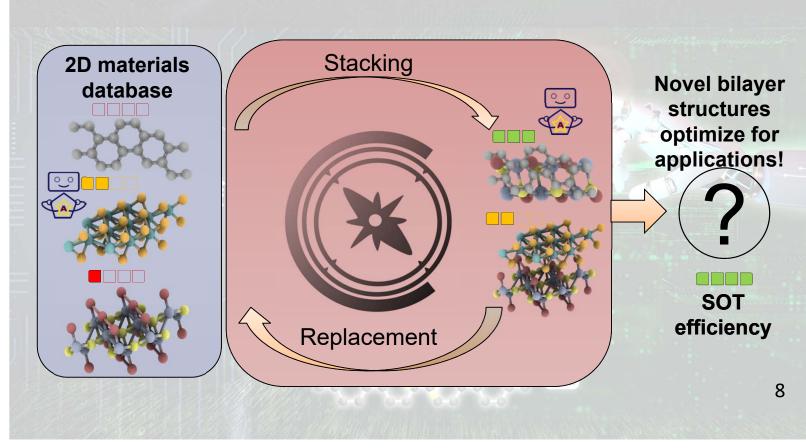
Experiment (hBN): 865 ± 73 Gpa **Tersoff potential (hBN):** 610 ± 22 GPa

Machine Learning Potential (hBN) 800 ± 15 GPa



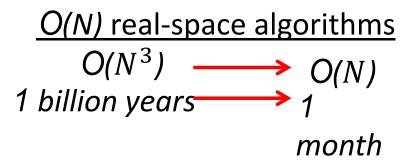
ERC-STG: AI4SPIN

Combine heuristic optimization and Al for spin-orbit memories



ERC-STG: AI4SPIN

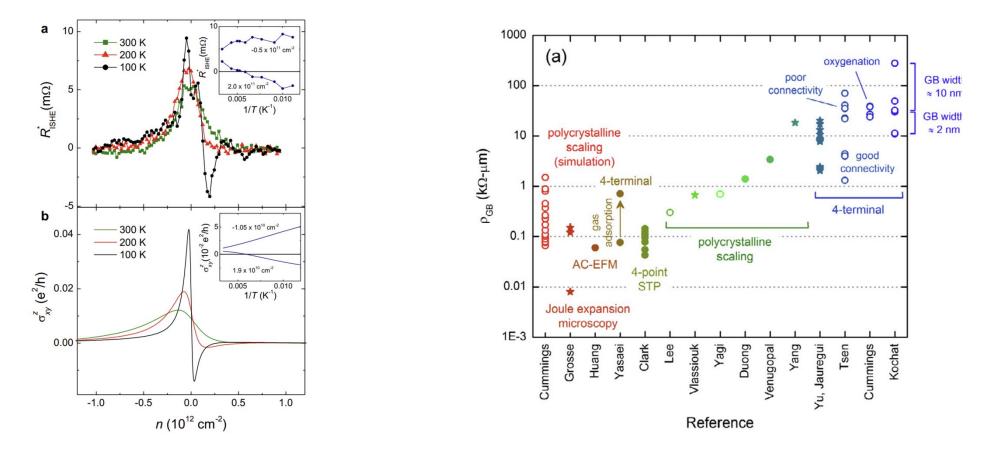
Combine heuristic optimization and Al for spin-orbit memories



$$\chi^{A}_{\alpha,\beta}(\mu,T) = \int_{-\infty}^{\infty} d\varepsilon \, f(\mu,\varepsilon,T) \operatorname{Tr} \left[\frac{dG^{+}(H,\varepsilon)}{d\varepsilon} A_{\alpha} \operatorname{Im}[G^{+}(H,\varepsilon)] j_{\beta} - \frac{1}{2} \int_{-\infty}^{\infty} d\varepsilon \, f(\mu,\varepsilon,T) \operatorname{Tr} \left[\frac{dG^{-}(H,\varepsilon)}{d\varepsilon} A_{\alpha} \operatorname{Im}[G^{-}(H,\varepsilon)] A_{\alpha} \frac{dG^{-}(H,\varepsilon)}{d\varepsilon} j_{\beta} \right] d\varepsilon$$

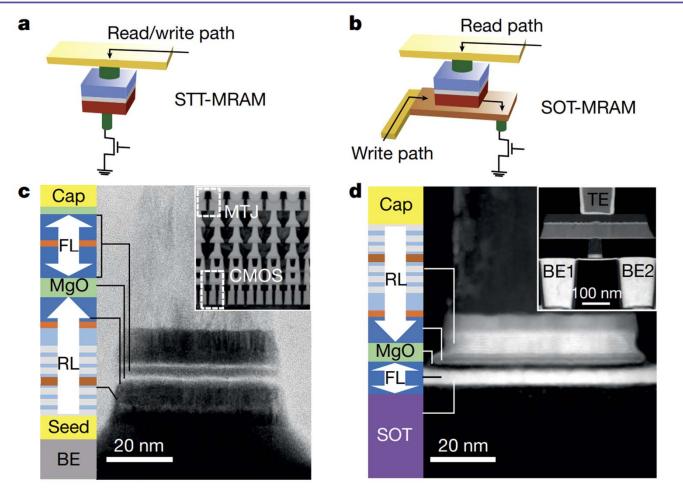
- A_{α}, j_{β} operator matrices *H* Hamiltonian matrix
- $G^{\pm}(H, \varepsilon)$ Green's functions
 - $N = 10^6 10^9$

atoms



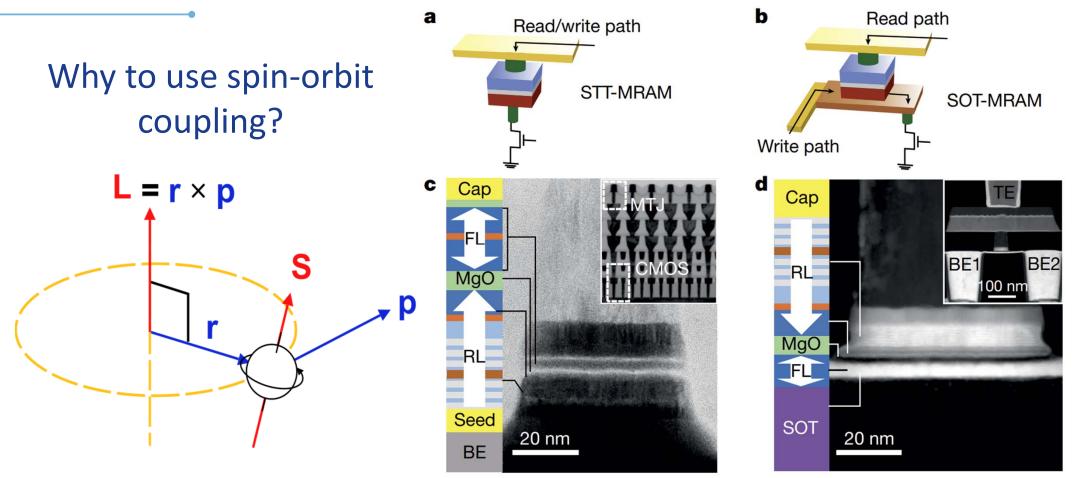
Z. Fan, Jose H.Garcia, A W. Cummings et al, Physics Reports 903, 7, 1-69 (2021) Jose H. Garcia, Lucian Covaci, Tatiana G. Rappoport, *Phys. Rev. Lett.* 114, 116602 (2015) EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Jose H Garcia, ICN2

Linear-scaling quantum transport methodologies

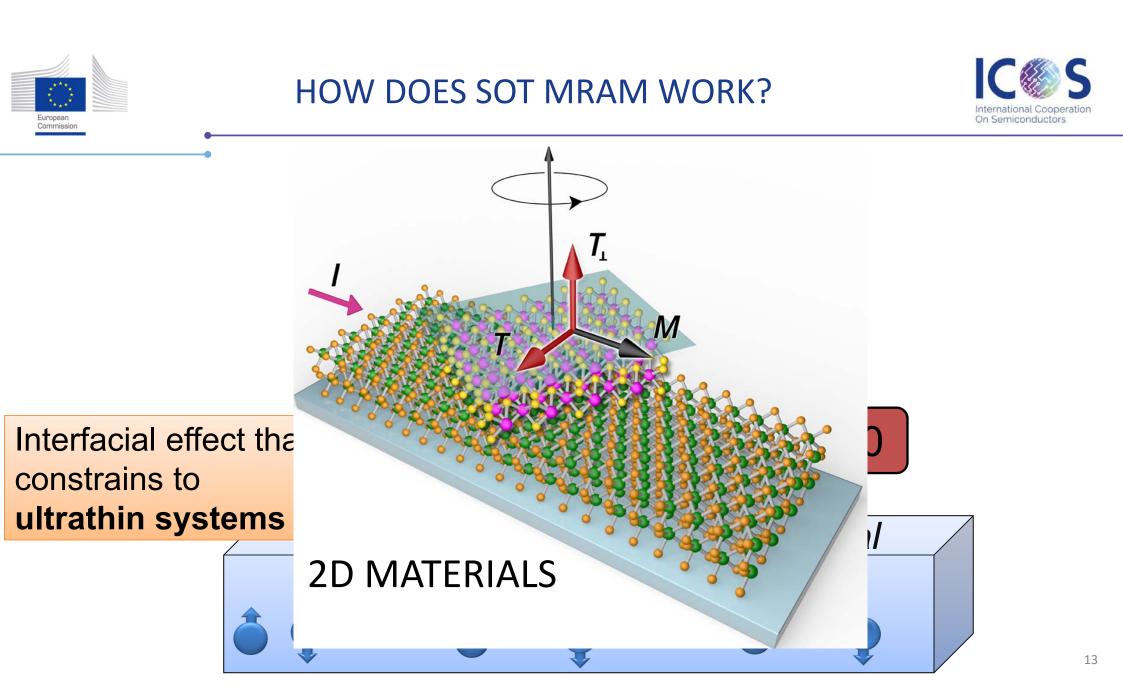


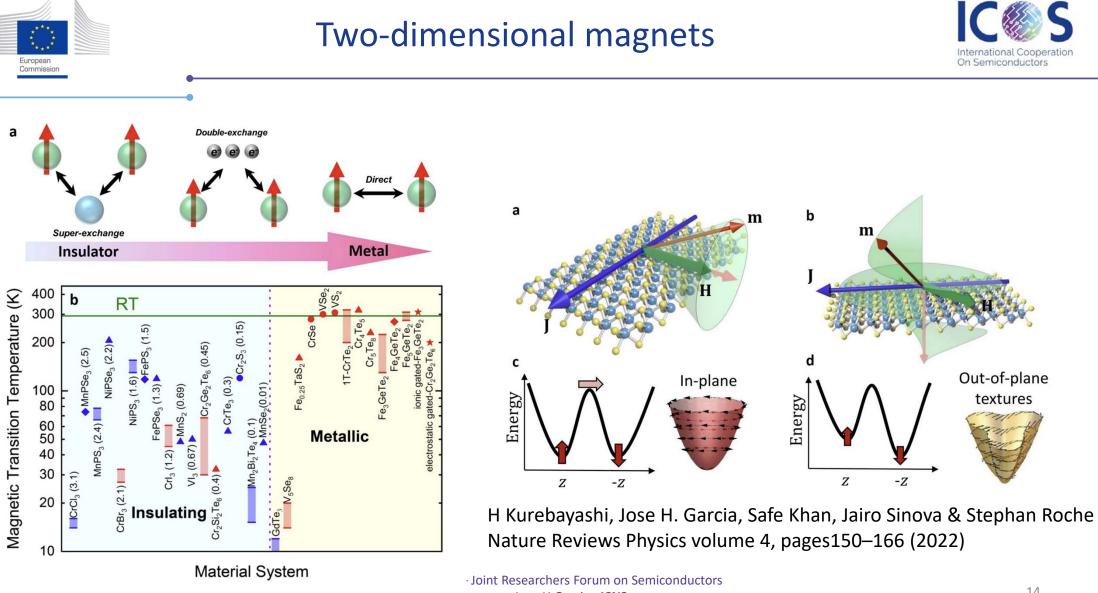
Magnetic Random Access Memories (MRAMs)

Why to use spin-orbit coupling?



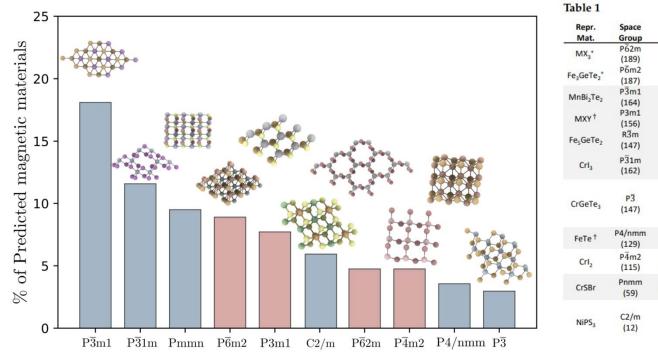
EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Jose H Garcia , **ICN2**



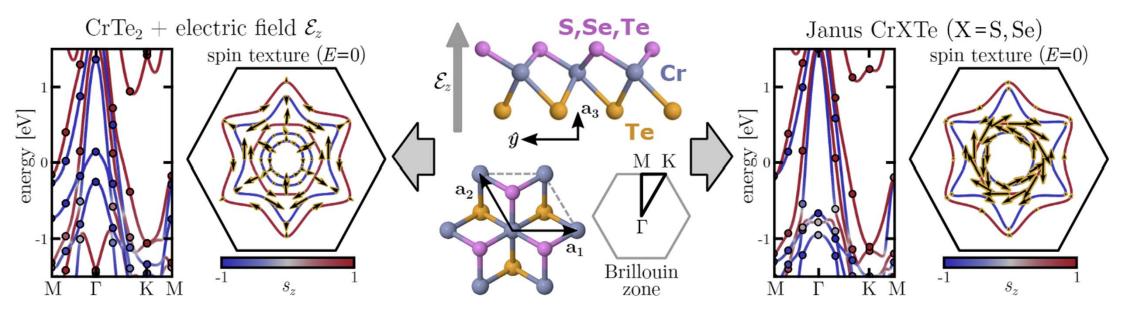

Magnetic Random Access Memories (MRAMs)

IC S International Cooperation On Semiconductors

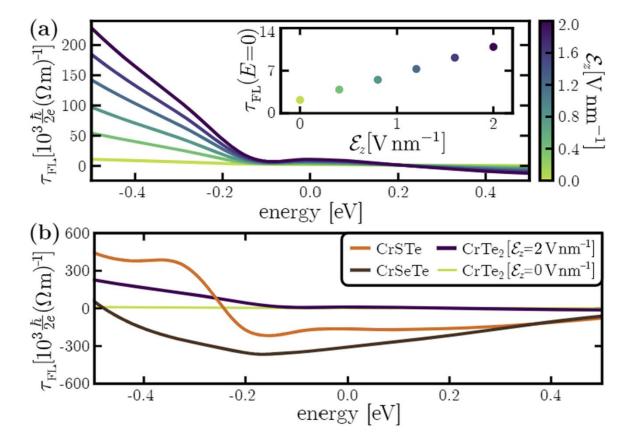
EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Jose H Garcia , ICN2 H Yang, et al, Nature 606, pages663–673¹²(2022)

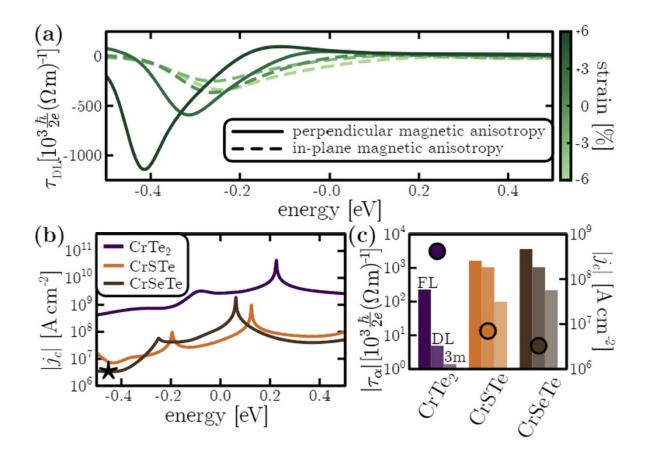


Linear-scaling quantum transport methodologies



Repr. Mat.	Space Group	Crystal System	H ^e	Ho
MX ₃ *	P62m (189)	Hexagonal	$\boldsymbol{\tau}_{FL} \boldsymbol{J} \times \boldsymbol{\hat{z}}$	$\tau_{DL} \mathbf{m} \times (\mathbf{J} \times \hat{\mathbf{z}}) + \tau_z m_z \mathbf{J} + \tau_{anl} \nabla_{\mathbf{m}} [J_y m_x m_y + J_x (m_y^2 - m_x^2)/2]$
Fe ₃ GeTe ₂ *	P6m2 (187)			$\tau_{\text{DL}} \mathbf{m} \times (\mathbf{J} \times \hat{\mathbf{z}}) + \tau_z m_z \mathbf{J} + \tau_{\text{ani}} \nabla_{\mathbf{m}} [J_x m_x m_y + J_y (m_x^2 - m_y^2)/2]$
MnBi ₂ Te ₂	P3m1 (164)		$\tau_{FL} \mathbf{J} \times \hat{\mathbf{z}}$	$\tau_{\text{DL}} \mathbf{m} \times (\mathbf{J} \times \hat{\mathbf{z}}) + \tau_{z} m_{z} \mathbf{J} + \tau_{ani} \nabla_{\mathbf{m}} [J_{x} m_{x} m_{y} + J_{y} (m_{x}^{2} - m_{y}^{2})/2]$
MXY [†]	P3m1 (156)			
Fe ₅ GeTe ₂	R3m (147)	Trigonal		
Crl ₃	P31m (162)			$\tau_{DL} \ \mathbf{m} \times (\mathbf{J} \times \hat{\mathbf{z}}) + \tau_z m_z \ \mathbf{J} + \tau_{ani} \nabla_{\mathbf{m}} [\ J_y \ m_x m_y + J_x (m_y^2 - m_x^2)/2]$
CrGeTe ₃	P3 (147)	Trigonal	$\tau_{\rm FL}^l \mathbf{J} \times \hat{\mathbf{z}} + \tau_F^{ll} \mathbf{J}$	$\begin{aligned} \tau_{\text{DL}}^{I} \mathbf{m} \times (\mathbf{J} \times \hat{\mathbf{z}}) &+ \tau_{z} \mathbf{m}_{z} \mathbf{J} + \tau_{ani}^{I} \nabla_{\mathbf{m}} \left[J_{y} \mathbf{m}_{x} \mathbf{m}_{y} + \frac{J_{x} \left(\mathbf{m}_{x}^{2} - \mathbf{m}_{y}^{2} \right)}{2} \right] \\ &+ \tau_{ani}^{II} \nabla_{\mathbf{m}} \left[J_{y} \mathbf{m}_{x} \mathbf{m}_{y} + \frac{J_{x} \left(\mathbf{m}_{x}^{2} - \mathbf{m}_{y}^{2} \right)}{2} \right] + \tau_{o}^{II} [(\mathbf{J} \times \mathbf{m}) \cdot \hat{\mathbf{z}}] \hat{\mathbf{z}} \end{aligned}$
FeTe [†]	P4/nmm (129)	Tetragonal	$\tau_{FL} \mathbf{J} \times \mathbf{\hat{z}}$	$\tau_o \mathbf{m} \times (\mathbf{J} \times \mathbf{\hat{z}}) + \tau_z \mathbf{m}_z \mathbf{J}$
Crl ₂	P4m2 (115)	Orthorhombic	$ \begin{pmatrix} 0 & \tau_{FL}^{xy} \\ \tau_{FL}^{yx} & 0 \end{pmatrix} \mathbf{J} $	$ (\mathbf{M} \cdot \hat{\mathbf{z}}) \begin{pmatrix} \tau_{\mathbf{z}}^{x} & 0 \\ 0 & \tau_{\mathbf{z}}^{y} \end{pmatrix} \mathbf{J} + \mathbf{M} \cdot \begin{pmatrix} \tau_{o}^{x} & 0 \\ 0 & \tau_{o}^{y} \end{pmatrix} \mathbf{J} \ \hat{\mathbf{z}} $
CrSBr	Pnmm (59)	Orthorhombic	$\begin{pmatrix} 0 & \tau_{FL}^{Ay} \\ yx & 0 \end{pmatrix}$ J	$ (\mathbf{M} \cdot \hat{\mathbf{z}}) \begin{pmatrix} \tau_{\mathbf{z}}^{x} & 0 \\ 0 & \tau_{\mathbf{z}}^{y} \end{pmatrix} \mathbf{J} + \mathbf{M} \cdot \begin{pmatrix} \tau_{o}^{x} & 0 \\ 0 & \tau_{o}^{y} \end{pmatrix} \mathbf{J} \ \hat{\mathbf{z}} $
NiPS ₃	C2/m (12)	Monoclinic	$ \begin{pmatrix} \tau_{\rm FL} & 0 \\ 0 & \tau_{\rm FL}^{xy} & 0 \\ \tau_{\rm FL}^{yx} & 0 & 0 \\ 0 & \tau_{\rm FL}^{yz} & 0 \end{pmatrix} \mathbf{J} $	$ \begin{pmatrix} M_{x} \tau_{o}^{x,xx} + M_{x} \tau_{o}^{x,xx} & M_{y} \tau_{o}^{y,yx} & 0 \\ M_{y} \tau_{o}^{y,yy} & M_{x} \tau_{o}^{x,yy} + M_{x} \tau_{o}^{x,yy} & 0 \\ M_{x} \tau_{o}^{x,xx} & 0 & 0 \end{pmatrix} \mathbf{J} \mathbf{H} \cdot \begin{pmatrix} \tau_{o}^{xx} & 0 & 0 \\ 0 & \tau_{o}^{yy} & 0 \\ 0 & 0 & 0 \end{pmatrix} $


H Kurebayashi, Jose H. Garcia, Safe Khan, Jairo Sinova & Stephan Roche Nature Reviews Physics volume 4, pages150–166 (2022)



EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Jose H Garcia , **ICN2**

 Two-dimensional materials are showing great promise for highly optimized non-volatile magnetic random access memories (MRAM), thanks to their interfacial characteristics, high tunability, and compatibility with existing technologies. Currently, Cr-based magnetic Janus materials appear to be among the most promising candidates, offering critical switching currents on par with those of the leading metal/magnetic interfaces.

ministerio de ciencia, innovación y universidades

AGENCIA Estatal de Investigación

This work was supported thorugh the I+D+i project PID2022-138283NB-I00, financed by MICIU/AEI/10.13039/501100011033/ and "FEDER Una manera de hacer Europa".

THANK YOU

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu