

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

1.4 Digital Technologies for Agri 4.0 Applications

Prof Alan O'Riordan

Tyndall National Institue, Ireland

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Alan O'Riordan

Tyndall National Institute

European Commission

Deep-Tech Innovation for Ireland

Commissio

Nanotechnology, electronics, photonics, quantum engineering, wireless & energy

Application Areas

Why AgriFoods? Societal Impact

The Nitrates Directive

Water Framework Directive The way towards healthy waters

Climate Change

Competition for land

Loss of Biodiversity

PEN Group - Research Focus

- Developing new advanced nanosensing platforms to digitalize the agri-food sector to enhance food security, reduce losses, increase sustainable production & economic return while also protecting biodiversity.
- Digital technologies will transform the traditional based agriculture industry to a knowledge based one.

Electrochemical Nanosensor

- Demonstrated increased sensitivity arising from enhanced analyte mass transport
- ✓ Significantly reduced signal noise (background noise)
- ✓ Enable direct electrical signal readout
- ✓ Very low analyte depletion
- ✓ Rapid Sensing
- ✓ Bi-potentiostat (2 Working electrodes)
- ✓ Multiplexed detection

Key Challenges

- Reference electrode drift
- Need to add chemical reagents
- Specificity, selectivity and sensitivity
- Need to calibrate every sensor
- Temperature Sensitivity

System Integration

Plant Pathology- Seed potato sector

- A key challenge to producing high-grade potato seed is the continued prevalence of Potato Virus Y (PVY)
- A surveillance strategy requires rapid and pre-symptomatic diagnosis in the field
- Absence of a field-based test that both detects and provides real-time information on the incidence of PVY within a potato crop.
- → Solution Digital Technology-based Portable Biosensor

Surface functionality – Spectral

characterisation

Raising the TRL - In-field Diagnostics

Minimum Viable Product

Technology Benchmarking

SAMPLE		ELISA (Absorbance)			PCR		Impedance (MQ)	
ID	Variety	PVY	PVS	PVA	PVY	Ct RT-PCR	rRct (MΩ)	PVY Presence
155A	T8247/04	0,326 (P)	0,231(P)	0,2 (N)	Р	14,515	32	LP
155B	T8247/04	0,114 (N)	1,72 (P)	0,189 (N)	Ν	29,505	27	Ν
156A	T8304/08	1,232 (P)	0,125 (N)	0,154 (N)	Р	14,875	70	MP
156B	T8304/08	0,114 (N)	1,817 (P)	0,303 (P)	Ν	30,715	23	Ν
157A	T8310/03	1,897 (P)	0,191 (N)	0,144 (N)	Р	14,755	100	MHP
160A	T8472/05	0,102 (N)	0,141 (N)	0,415 (P)	Ν	29,42	25	Ν
161B	T8486/02	2,538 (P)	0,108 (N)	0,2 (N)	Р	14,505	250	HP
161A	T8486/02	0,232 (P)	0,19 (N)	0,208 (N)	Р	15,63	35	LP
164A	T8560/07	0,977 (P)	0,111 (N)	0,166 (N)	Р	14,995	57	MLP
165A	T8561/01	1,593 (P)	0,262 (P)	0,312 (P)	Р	13,895	77	MP
166A	T8597/02	0,101 (N)	0,146 (N)	0,133 (N)	Ν	30,95	20	Ν

Abbreviations: P (Positive), N (Negative); LP (Low Positive), MLP (Medium-low Positive); MP (Medium positive), MHP (Medium-High Positive); HP (High Positive); PVY (Potyvirus Y) PVS (Potyvirus S); PVA (Potyvirus A) Ct-PCR (cycle threshold PCR), Rct (Charge transfer resistance)

Calf wellbeing – animal welfare

Interdigitated electrodes for pH control

Reduction: $2 H^+(aq) + 2e^- \rightarrow H_2(g)$

European Commission

Prof Alan O'Riordan, Tyndall National Institute, Ireland

Saliva Sensor - approach

European

Commission

Prof Alan O'Riordan, Tyndall National Institute, Ireland

Saliva Monitoring

Table 2. pH and glucose concentrations found in real saliva samples.

Samples	рН	Glucose Concentration (μM) (pH control off)	Glucose Concentration (µM) (pH control on)
Calf-1	8.2	1.7 ± 0.1	120 ± 6
Calf-2	8.6	0.8 ± 0.1	110 ± 6
Calf-3	7.6	6.5 ± 0.3	100 ± 5
Calf-4	7.3	14 ± 1	190 ± 9
Calf-5	5.3	460 ± 23	1420 ± 71

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Prof Alan O'Riordan, Tyndall National Institute, Ireland

Conclusion

- Global Population has surpassed 8 Bn people, urgent need to produce more food sustainably and/or reduce food losses.
- Silicon chip-based chemical and biochemical sensors are being developed that can provide input into digital support systems.
- Significant commercial opportunities exist for new and disruptive technologies in the Agri-Food sector
- Biosensor were developed for detection in saliva and both plant and animal sera
- Time to result of Between 2 30 minutes → real-time decision-making capacity to stakeholders

THANK YOU

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Shiga toxin-producing E. coli

Chitosan Gold Deposition

Fluorescence Characterisation

DNA - Electrochemical Detection

Quantitative Detection

Cell Lysate - Selectivity

Nanosensor Platform

European

Commission

