

Tailoring Memristors through Metallization on Amorphous Thin Films

Hanwool Yeon 2024-03-26

Synergy Mechanics Atomic kinetics Regulating structures Thermodynamics

SMART Metallization Lab.

Neuromorphic edge Ai (On-device sensing & processing) Synergy Mechanics Atomic kinetics Regulating structures Thermodynamics

Reliability

Innovation

Emerging Memory Device in the Data Explosion Era

 Memristor (or RRAM)

 Image: Credit: lelmini, D. (2018)

Nano-scalable, two-terminal conductance switch

	Metric	DRAM	Flash	Memristor
1	Programming speed (s)	1.00E-08	1.00E-04	8.50E-11
2	Programming energy (J)	5.00E-15	2.00E-17	1.15E-13
3	Standby power (W GB ⁻¹)	1.00E-01	1.00E-03	1.00E-03
4	Endurance (cycles)	> 1E16	1.00E+04	1.00E+12
5	Retention (@ RT)	64 ms	10 years	1000 years
6	Memory states	2	≥2	≥64

Yang, J. J. Nature Nanotechnology 8, 13 (2012), Nature Rev. Mater. 5, 173 (2020)

1) massive data storage, 2) high-density memory & 3) in-memory computing

Key Principles of Memristors

Memristors for Diverse Applications

	Requirements	Best result	Storage	Memory	Inference	Training
1	Spatiotemporal variation	1%	Low	Low	Low	Not critical
1	Conductance states	64	2 - 16	2	2 - 32	64 - 512
2	Analog switching linearity/symmetricity	0.1	Not critical	Not critical	<1	<1
3	on/off ratio	64	>10	>50	>10	>500
4	Off-state conductance	0.01 µS	<1 µS	<10 µS	<0.01 µS	<0.01 µS
5	Switching speed	85 ps	< 10 µs	< 1 ns		Not critical
6	Min. programming energy	0.12 pJ	<1 pJ	<5 fJ	<10 pJ	Not critical
1	Endurance	1.0E+12	> 1E4	>1E16	Not critical	>1E11
2	Retention (@ RT)	1000 years @ RT	>10 years	> minutes	> 10 years	Not critical

References: Yang, J. J. Nature Nanotechnology 8, 13 (2012), Nature Rev. Mater. 5, 173 (2020), Hwang, H. group, IEDM15-91 (2015) Xiong, F. group. Adv. Mater. Technol. 4, 1900037 (2019), Wu, H. group, Nature Electronics 3, 371 (2020)

Amazing potential to meet the demands of each application.

No memristors have fulfilled all the favorable properties simultaneously

1) Programming current vs. non-volatility

Less energy consumption, but poor retention

2) Endurance vs. switching stability (variation & retention)

3) Digital switching vs. analog switching

Hwang, H. group. Adv. Mater. 29, 1701752 (2017)

Our Material Strategies to Address the Dilemmas

Concentration, interfacial energy, etc.

Ion mobility, nucleation barrier, etc.

Ion mobility, nucleation barrier, etc.

Nucleation barrier, etc.

Controlling thermodynamic and kinetic factors between metals and amorphous materials

endurance vs. switching stability (variation & retention)

Switching stability would be strongly related to thermodynamic stability of metals in Si

Let's imagine metal movements!

*DFT calculation: Chanyeol Choi (co-1st author)

10

Coupling of

Cu, backbone of Ag channels → Uniform switching (stable 'off' state)

 \rightarrow Stable retention properties

+ Better analog switching performance

DC switching

Yeon, H. et al., Nature Nanotechnology 15, 574 (2020)

12

Summary

SMART metallization on amorphous thin films for

resolving performance dilemmas & realization of application-tailored memristors

Ag Ag alloy Amorphous 1) Endurance vs. switching stability (variation & retention) Si p+-Si (0.01 ohm cm) Cu 2) Programming current vs. non-volatility Amorphous Defect medium engineering Pt Cu 3) Digital switching vs. analog switching Amorphous SiO₂ Pt Amorphous material

Thanks for your attention

smartmetallization@gmail.com hanwool@gist.ac.kr

www.yeonlab.org

LOVE. RESEARCH. SIMPLE.