Al Semiconductor (On-Device Al) Present and Future

2024.03.26

KAIST

Hoi-Jun Yoo ICT Chair Professor Director, AI-PIM Center Dean, AI Semiconductor Graduate School

Contents

- **1. What is AI Semiconductor**
- 2. Present AI Semiconductors
- 3. Future of AI Semiconductor

Contents

1. What is AI Semiconductor

2. Present Al Semiconductor

3. Future of Al Semiconductor

AI & Deep Learning

Conventional AI

• Deep Learning (DNN): Learn by Data

Deep Neural Network (DNN)

Neural Processing Unit (NPU)

- Basic NPU Architecture
 - Fetch Inputs and Weights from DRAM or SRAM
 - Matrix Multiplication and Addition in PE Array

Evolution of DNN Processors

- CPU : Low Performance of DNN
- GPU : High Power
- NPU : Optimized for DNN Operation **GPU**

- <10 Processing Cores
- General Purpose
- Floating Point Operation
- SW Programmability

Floating Point Operation

CUDA Programmability

Matrix Computation

~1K FP PEs

PE

- >10K Integer PEs
- FP/Integer Operation
- Convolution Operation
- Data Reuse

KAIST MPIM

Developments of DNN

Evolution of DNN Accelerators

Intelligence Revolution

Intelligence Revolution

Trends in AI Semiconductor

- Large Model with Low Power Consumption → On-Device AI
- Co-Optimization of SW, HW, and Domain Specific Application

1. Basic

– DRAM PIM and NVM PIM
– Neuromorphic & SNN

2. Domain Specific App.

- DRL, NeRF, Gen. AI NPU

– 6G , Metaverse, DigitalTwin

3. Large Model

– LLM (chatGPT) Acceleration– LMM Optimization

Contents

1. What is Al Semiconductor

2. Present AI Semiconductor

3. Future of AI Semiconductor

History of AI Semiconductor

2007 BONE-V2 : Visual Attention

- Implementation of "Visual Attention" on silicon chip
 - 이미지 상의 중요 키포인트 강조
 - 키포인트 필터링을 통한 Pixel-level visual attention

KAIST MPIM

2007 World First CNN Accelerator

BONE-V2 (2007 ISSCC)

□ 0.13µm 8M CMOS Tech.
□ 6mm x 6mm
□ Power Supply

- □ Power Supply
 - 1.2V: Core
 - 2.5V: I/O

Operating Frequency

- 200MHz for IPs
- 400MHz for NoC

□ # of Transistors

- 1.9M gates
- 228kB SRAM

Power Consumption

 Less than 583mW (Object recognition)

2009 BONE-V4: Unified Attention Model*

- Feedforward Attention
 - → Bottom-up : Salient Image Features
- Attention-Recognition Feedback Loop

→ Top-down : Familiar Objects

KAIST MPIM

*S. Lee et al., "Familiarity based unified visual attention model for fast and robust object recognition" , Pattern Recognition 2010

BONE-V4

10mm

Technology	0.13um 1P8M Logic CMOS	
Die Size	50mm ² 10.0mm x 5.0mm	
Gates / SRAM	2.92M Gates / 612 kB	
NoC IPs	51	
Power Supply	CCL & NoC	1.2 V
	PPL	0.65 ~ 1.2 V
Operating Frequency	Global NoC	400MHz (45FO4)
	CCL	200MHz (90FO4)
	PPL	50 ~ 200MHz (90FO4)

2009 BONE-V4: Demonstration

2017 Low Power Face Recognition SoC

- Always-On \rightarrow Ultra Low Power
 - 0.6mW Full CNN Operation
- Hybrid Face Detector
 - Face detection by CMOS image sensor
 - Combine analog & digital face detector

KAIST MPIM

2017 Face Recognition Demo Video

2017 CNN + RNN Deep Neural Network

CNN: Static Picture Recognition

Dongjoo Shin et al, ISSCC 2017

- Face recognition, image classification...
- RNN: Temporal Video Recognition
 - Translation, speech recognition...
- CNN + RNN: CNN−extracted features → RNN input

- Previous works
 - Optimized for convolution layer only: [6], [3]
 - Optimized for FC layer and RNN only: [5]

[3] B. Moons, SOVC 2016
[5] S. Han, ISCA 2016
[6] Y. Chen, ISSCC 2016

2017 DNPU : Pet Robot Demonstration

D. Shin, et al. "14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-RNN processor for general-purpose deep neural networks." *ISSCC 2017* KAIST MPIM

2018 Unified NPU: Programmable DNN Arch.

- Unified Data Path
 - Dynamically Programmable for CNN, RNN/FC
- Support Various CNN & RNN Workload

Lee, Jinmook, et al.

"UNPU: A 50.6 tops/w unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision." ISSCC 2018

2018 UNPU : Emotion Recognition

Lee, Jinmook, et al. "UNPU: A 50.6 tops/w unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision." *ISSCC 2018*

History of AI Semiconductor

Inference & Training

Inference & Training

Robust Object Detection w/ DNN Training

- HNPU-V2: 정확도 보상을 위한 Online DNN Tuning
- 예상치 못한 상황에서 자동으로 정확도 회복 가능

2021 HNPU-V2 Demonstration Video

Generative Adversarial Network

2020 GANPU

Deep Reinforcement Learning

OmniDRL : Advanced DRL Processor

Humanoid Robot Agent Training w/ DRL processor

J. Lee, et al. "OmniDRL: A 29.3 TFLOPS/W Deep Reinforcement Learning Processor with Dual-mode Weight. Compression and On-chip Sparse Weight Transposer,", VLSI 2021

2021 OmniDRL : Demonstration Video

J. Lee, et al. "OmniDRL: A 29.3 TFLOPS/W Deep Reinforcement Learning Processor with Dual-mode Weight. Compression and On-chip Sparse Weight Transposer,", VLSI 2021

Contents

1. What is AI Semiconductor

2. Present Al Semiconductor

3. Future of AI Semiconductor

History of AI Semiconductor

Spatial Computing

□ Human + CPS (Cyber Physical System)

The digitization of activities of machines, people, objects, and the environments in which they enable and optimize actions and interactions.

Conventional 3D Modelling

Manual Design w/ 3D Graphics Tool

- Expert-only 8
- 70-110h to design 😕

Specialized 3D Scanning Studio

High-cost equipment (8)
 (~150 DSLR Cameras)

Photogrammetry w/ Mobile Camera

- Requires feature extraction
- Fail for featureless surface

NeRF 3D Modelling

2023 MetaVRain: 3D NeRF Processor

• Mobile AR/VR 기기를 위한 AI 기반 Real-time Rendering

2023 MetaVRain : YTN

2024 NeuGPU: 3D NeRF Processor

NeRF-based Instant Modeling & Real-time Rendering Processor

2024 NeuGPU: Demonstration Video

Evolution of PIM Architecture

- 메모리와 연산기의 융합성 증가
 - Near Memory Processing \rightarrow Processing in Memory

Evolution of DNN Processor

Evolved to Memory Centric Computing

Advantages of PIM

KAIST PIM: Triple Mode Cell

- Multi-functional 3T-2C Cell
 - Support dynamic resource switching (Computing \(Computing))

DynaPlasia

• DynaPlasia (ISSCC'23) : Reconfigurable IMC

S. Kim, et al. "DynaPlasia: An eDRAM In-Memory-Computing-Based Reconfigurable Spatial Accelerator with Triple-Mode Cell for Dynamic Resource Switching,", ISSCC 2023

2023 DynaPlasia

Neuromorphic/Spiking NN

□ Microscopic Brain Structure or Macroscopic Brain Function

2023 C-DNN: Complementary-DNN Processor

Energy Efficient CNN/SNN Hybrid Processor

KAIST MPIM

53/60

KAIST C-DNN: Neuromorphic Accelerator

- □ Input magnitude incurs small performance variation in CNN
 - Small magnitude input data ↑ → SNN domain efficient
 - Small magnitude input data ↓ → CNN domain efficient

2023 C-DNN: Demonstration Video

2024 C-Transformer : DNN/Spiking Transformer processor

Motivation

Spiking- DNN-Transformer Transformer

Cross Attention

Feed-Forward

High Reconfigurability is Required

KAIST MPIM

2024 C-Transformer Architecture

- Homogeneous DT/ST Core
 - Dynamically changed ratio of spike and non-spike domain
 - → Hybrid multiplication/accumulation unit (HMAU) is proposed!

2024 C-Transformer Architecture

Results of 3-Stage Compression

□ Extended Sign Compression: 74~81% parameters are reduced

2024 C-Transformer: Demonstration Video

Thank you!