PIM use case: Cost-effective LLM accelerator using AiM (Sk hynix's PIM)

Euicheol Lim

Al chatbot : Game changer of Al Market

AI chatbot is opening a new mainstream market for AI Services but OpEx issues have to be solved ۲

Al chatbot inference – Prompt & Response

- AI chatbot Inference consists of input processing (prompt) and answer generating (response)
- Especially, response stage is significantly memory intensive

Prompt : Comprehension

Input: 9 Words / Model Parameter Read: 1

Computing-Intensive

Response: Generating Answer

Output: 196 Words / Model Parameter Read : 261

Memory-Intensive

1) For easy understanding, we use 'Words' as a unit of sequence length as opposed to 'Token'. Since 1 Token is the same as 0.75 Word on average, the number of 'Read' is 261.

Is GPU sufficient for AI chatbot service?

• Need higher performance and more cost-effective computing infra than current system

Why PIM as a LLM service Accelerator?

• PIM is the best option for LLM service which is highly memory-Intensive.

LLM service with Model & Size

 The larger the model, the more memory intensive function (specifically, "GEMIV"), so Memory Bandwidth for GEMV operation has a greater impact on system performance than the processor

Memory-Intensive Application like LLM inference

AiM introduction

 SK hynix's very first GDDR6-based processing-in-memory (PIM) product called AiM(Accelerator-in-Memory) is ready

	BKO	ВКЗ	BK4	BK7
	MAC	MAC	MAC	MAC
	Activation	Activation	Activation	Activation
	Activation	Activation	Activation	Activation
	MAC	MAC	MAC	MAC
	BK1	BK2	BK5	BK6
-	GLOBAL BUFFER PERI			
	BK8	BK11	BK12	BK15
	MAC	MAC	MAC	MAC
	Activation	Activation	Activation	Activation
	Activation	Activation	Activation	Activation
	MAC	MAC	MAC	MAC
	BK9	BK10	BK13	BK14

AiM			
Memory Density	1GB		
Bandwidth-external	64 GB/s		
Function Support	GEMV, Activation		
GEMV Bandwidth	0.5 TB/s (x8 of external BW)		
GEMV Performance	0.5 TFLOPS		
Numeric Precision	Brain Floating Point 16 (BF16)		
Targets	Memory-intensive AI applications		

Critical Metric

Performance per Memory Capacity [TFLOPS/GB]

ightarrow Memory BW per Memory Capacity [TB/s / GB] (if OI = 1)

AiMX card - How to deploy AiM into existing system

• Can be easily deployed into the existing system by adding the AiM based Accelerator (AiMX) Card, rather than by replacing DRAM with PIM

Memory bottleneck

- Host SoC (xPU) must be modified¹⁾
- SW burden for memory mgmt.

- No need to modify any existing xPUs
- Need an AiM Control Hub chip
- SW modification can be minimized

1) Conventional memory controller + additional command for PIM operation + in order scheduling

AiMX architecture – Efficiency & Flexibility

- Efficiency: AiM chip processes large amount fixed memory-intensive function (GEMV) efficiently
- Flexibility: AiM-Control-Hub processes small amount various functions flexibility

1) Measured data using 1x V100 GPU with PyTorch (v2.0)

SK hynix

LLM Architectures Similarity

1) Rotary Positional Embedding 2) Root Mean Square Layer Normalization

AiMX benefit – Performance & Energy consumption

350GB

200TB/s

1.8 msec

(350GB/200TB/s)

0.46 sec

• Provide different level of customer experience by 13x shorter service latency

GPU A (80GB, 3TB/s) x 5 AiM (16GB, 8TB/s) ¹x 25

13x Shorter Service latency

• Reduce operating cost significantly with 17% energy consumption

13x Shorter Service latency

350GB

15TB/s

23 msec

(350GB/15TB/s)

6.0 sec

1) Prototype configuration (16 AiM chips per card)

GEMV energy consumption : 17% of GPU

- 1. Small controller and dedicated MAC unit in AiM
- 2. Remove off-chip data movement and reduce internal data movement
- 3. Reduce the static energy by short processing time

SK hynix

Model size

Bandwidth

Processing Time

(1 token)

Processing Time

(261 token)

Example System configuration

- Most optimal computing infra for LLM service will be combination of GPU system and AiMX system
- GPU system for Prompt Stage, AiMX system for Response Stage

Prompt Stage (Question Understanding)

- Input tokens are processed in parallel
- Needs just 1 time model data read for all token
- Computing intensive

GPU system

<section-header><list-item><list-item><list-item>

Showcase : Q&A AI app. on AiMX proto. system

- We developed an AiMX proto. card using FPGA chip and built an AiMX reference system optimized for LLM with GPU cards for Prompt Stage and AiMX cards for Response Stage
- Q&A AI application showcase with AiMX prototype system at SK hynix booth

AiMX prototype card

• When the AiM controller is implemented as an ASIC, more area can be used to mount more AiM chips to provide more memory capacity and more memory BW.

Direction of Next Generation AiM

- To catch up moving target of LLM service & infra trend
- 1. Higher memory capacity per card & server
- 2. Higher processing performance for multi-batching & beam search
- 3. Lower precision support for reduced model

Not only Datacenter market, there are client and mobile LLM computing demands

