

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Design ASIC architectures for generic, self-learning and reliable neuromorphic AI accelerators.

Martin Andraud Assistant Professor, UC Louvain (Belgium) Visiting Professor, Aalto University (Finland)

Brussels (Belgium) March 25-26, 2024

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Name

My background (I)

UCLouvain A?

- Originally from Clermont-Ferrand, France
- Assistant professor in *UCLouvain* since 01/2024
 - Visiting professor at Aalto University

Main research interests:

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Name , Institution

4¢`

Edge AI: a hardware/software issue

[1] https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator
[2] https://paperswithcode.com/sota/image-classification-on-imagenet
[3] Thompson et al., Deep Learning's Diminishing Returns, 2021

✓ More efficient accelerators but even bigger NN models → We need to explore alternatives

Deep NNs have known limitations (reliability, explainability, hardware efficiency) and could be well complemented or replaced (in specific tasks) by other models...

This is my research focus

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Name , Institution

1. More and more Deep Learning models shift towards **sparse** matrix/tensor computation:

2. Combining "emerging" models on the same architecture is gaining a lot of interest as well:

Efficiently compute these emerging models requires hardware solutions

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Name , Institution

Emerging models on-chip

3. These "Emerging" models can be now implemented with efficient and tensorized forms:

Probabilistic circuits (PCs)

- PCs are computational graphs (similar to DNNs) but they are encoding a probability distribution (for inference).
- Composed of basic computations (Weighted sums, products, max, etc.)
- Can be learned from data (as DNNs)
- Can be used for logic/neurosymbolic AI
- They have **tensorized** versions available
 - Einsum Networks, RAT-SPNs...

1+2+3: find a common computation primitive and a single hardware for all these applications

A tensor computing primitive

Computing this tensor would fit various AI models:

Compute this tensor (vector-matrix multiplication) of dimension K*K:

- Outer product of inputs (K² PRODs)
- Vector MAC operation
 - Connect results to K sum nodes with weights (K³ PRODs)
 - Accumulate (K SUMs or K³-1 accumulations)

Trees of tensors are explicicly used in Sparse DNN computation [4], Compressed NNs [5], probabilistic circuits [6,7] → Accelerator dedicated to this?

[8] N.Shah et al. "DPU-v2: Energy-efficient execution of irregular directed acyclic graphs" MICRO 2022

- DPU is a state-of-the-art HW accelerator for irregular graph processing [8]
 - Targets the execution of irregular Direct Acyclic Graphs (PCs, sparse solvers)
 - Computation in 8b/16b/32b Floating point
- DPU decomposes graphs in multiple blocks executed on trees of PEs
 - Each PE can do an add, mult. or be bypassed
- Performance
 - Irregular graphs 10 GOPS, 3-6 GOPS/W
 - "regular" graphs: 17 GOPS, 42 GOPS/W

- Collaborate on this type of generic architecture
 - Find other computation primitives for more models
 - Include the possibly of online training
- Collaborate on analog In-Memory Computing architectures
 - How to make AIMC really reliable?
 - Can we use AIMC for high(er) resolution computing?
- Find applications of combined AI model execution
 - Explainable AI, uncertainty estimation, etc.

THANK YOU

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

[1] https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator

[2] https://paperswithcode.com/sota/image-classification-on-imagenet

[3] Thompson et al., "Deep Learning's Diminishing Returns", 2021

[4] Nandeeka Nayak, et al. "TeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators". In 56th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO '23)

[5] J. Gu, B. Keller, J. Kossaifi, A. Anandkumar, B. Khailany, and D. Z. Pan, "HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression." arXiv, Nov. 30, 2022. doi: 10.48550/arXiv.2211.16749.

[6] R. Peharz et al. "Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning", Conference on Uncertainty in Artificial Intelligence, 2019.

[7] Robert Peharz et al. "Einsum Networks: Fast and scalable learning of tractable probabilistic circuits". arXiv preprint, 2020.

[8] N.Shah et al. "DPU-v2: Energy-efficient execution of irregular directed acyclic graphs" MICRO 2022

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Name , Institution