MoS, growth and device technology Towards integration with multiplexed graphene sensors arrays

Institut Català de Nanociència i Nanotecnologia **EXCELENCIA**

SEVERO

OCHOA

B CN2

L. Remacha-Gelabertó¹, C. M. Schaefer¹, E. del Corro¹, J. A. Garrido^{1,2} ¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) ²Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

Graphene based solution-gated FETs are the only technology that has been demonstrated to record ultra-slow brain electrophysiological activity.

Need: Large matrix of sensors with a reduced cable footprint.

Solution: Monolithic integration of MoS₂ FETs.

MoS₂ technology requires advancements to reach manufacturing readiness, covering everything from growth to device integration.

MoS₂, Field Effect Transistors Nanofabrication Challenges

MoS₂ growth by Metal-Organic CVD

- Homogeneous large-scale synthesis (2x2 cm²) without toxic H₂S gas
- Molybdenum hexacarbonyl and diethyl sulfide as gas phase precursors
- Mono- and few-layers nanocrystalline MoS₂ on SiO₂/Si
- Diethyl sulfide is prone to carbon incorporation, impacting the nucleation density, lateral growth and electrical properties.
- \checkmark H₂ gas is added to reduce carbon incorporation

Dielectric growth by Atomic Layer Deposition (ALD)

- Need for compatible high-K dielectrics such as Al_2O_3
- ALD allows conformal growth with atomic thickness control
- Trimethyl aluminium and water as gas phase precursors

Induced Coupling Plasma - Reactive Ion Etching

- MoS_2 easily oxidizes to MoO_x with O_2 plasma
- MoO_x residues are hard to remove with O₂ plasma and may not be noticed by eyesight
- Solution: MoO_x can be removed with Ar plasma

Solution to test – Al₂O₃ hard mask

× Ar plasma stiffens the photoresist even for a decreased plasma power

MoO_v Ar-etch

MoS₂ encapsulation with AlO_x seed layers

- \times ALD on polycrystalline MoS₂ yields a no-uniform dielectric with pinholes
- Chemisorption on the dangling-bonds-free basal plane is inhibited

- Solution: prior to ALD, E-beam evaporation of Al seed layers (1nm x3), which oxidise upon air exposure or by the residual O_2 inside the evaporator chamber (10⁻⁷ Torr).
- AIO_x causes charge transfer doping (O-vacancies) and introduces charge traps
- Al hydroxides formed upon H₂O-air exposure may also contribute

MoS₂ FETs performance prior to optimizations

Acknowledgements

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

4 µm² images

Future plan

MoS₂ growth: The ICN2 is funded by the CERCA programme / Generalitat de [1] Lemme M.C. et al., "2D materials for future heterogeneous electronics", Nature Increase grain size – sodalime substrate and seed promoters Catalunya, and it is supported by the Severo Ochoa Centres of Communications 13, 1392 (2022). Aixtron Black Magic Box– low temperature 4-inch growth compatible with polyimide and BEOL Excellence programme, Grant CEX2021-001214-S, funded by [2] Masvidal-Codina E. et al., "High-resolution mapping of infraslow cortical brain activity MCIN/AEI/10.13039.501100011033. enabled by graphene microtransistors", Nature Materials 18, 280–288 (2019) **Dielectric growth:** Reduce dielectric thickness and implement HfO_2 – thermal or plasma enhanced ALD [3] Schaefer N. et al, "Multiplexed neural sensor array of graphene solution-gated field-This project has received funding from the European Union's Horizon Conductive AFM to address the dielectric quality effect transistors", 2D Materials 7, 2, 025046 (2020). Europe research and innovation programme under grant agreement Valence band analysis of the AlO_x seed layers No 101136541 - GphT-BCI. [4] Schaefer C.M. et al., "Carbon incorporation in MOCVD of MoS₂ thin films grown from an organosulfide precursor", Chem. Mater 33, 12, 4474-4487 (2021). Metal electrodes and contacts: E. del Corro acknowledges the Ramón y Cajal tenured grant, RYC2019-Determine the current contact resistance limitation – explore other metals and finger width effect [5] McClellan C. J. et al., "High current density in monolayer MoS₂ doped by AlO_x", ACS 027879-I/10.13039/501100011033, funded by MCIN/AEI. Implement metal diffusion barriers (such as Pt or Ni) between Ti and Au Nano 15, 1, 1587-1586 (2021).

References

