

The 1st ROK-EU Semiconductor **Researchers Forum**

Patterned Multi-Wall Nanosheet FETs for Aggressive Scaling: Zero Gate Extension with Minimal Gate Cut Width

Sanguk Lee, Jinsu Jeong, and Rock-Hyun Baek^{*}

Pohang University of Science and Technology (POSTECH), E-mail : <u>sanguk96@postech.ac.kr</u>, <u>rh.baek@postech.ac.kr</u>*

I. Motivation

- Forksheet FETs (FSFETs) allow for aggressive scaling of cell height by introducing the dielectric walls between the N/P-type devices.
- However, their electrical performance is lower than that of NSFETs due to

one side of the channel and S/D inevitably interfacing with the wall.

- Additionally, one of the gate edges that is not aligned with the wall still requires sufficient gate cut (GC) and gate extension (GE) margins.
- We propose patterned multi-wall NSFETs (MW-NSFETs) featuring 1) gate-all-around (GAA) channel, 2) wrap-around contact (WAC), 3) selfaligned gate edges with minimal GC, and 4) confined S/D.

II. Simulation Design and Methodology

The MW-NSFETs were thoroughly analyzed using Synopsys TCAD.

Figure 1. (left) The schematic comparison between the FSFETs and MW-NSFETs. (right) Cross-sectional view along the X-X' cut line of MW-NSFETs and FSFETs.

Figure 2. Process flow of MW-NSFETs, and cross-sectional view of main process (1)-(6).
Table 1. Geometric parameters for MW-NSFETs

Parameters	Values	Parameters	Values
Contact poly	42 nm	Spacing layer	10 nm
pitch (CPP)		thickness (T _{SP})	
Fin pitch (FP)	45/54	Inner spacer	5 nm
MW-NS/FS	nm	length (L _{IS})	
Metal pitch	16 nm	IL/HK thickness	0.6/1.1
(MP)		(T_{II}/T_{HK})	nm
Gate length	12 nm	S/D doping	5×10^{20}
(L_G)			cm ⁻³
NS width	25 nm	PTS doping	2×10^{18}
(W _{NS})			cm ⁻³
NS thickness	5 nm	Gate cut length	18 nm
(T _{NS})		(L _{GC})	
Wall thickness	20 nm	Gate extension	10 nm
(\mathbf{T})		longth (I)	

Figure 4. (left) Key factors for patterned wall. (right) Patterned wall according to L_{RMG} & L_{Sili}.

0.5%

-0.460

-0.453

Less sensitive

to X-direction

Figure 8. (left) Wall pattern mask misalignments for various directions. (right) RC delay due to mask misalignment. The dashed lines indicate the percentage change of the RC delay due to the misalignments compared to the RC delay with well-aligned.

IV. Conclusion

The optimal wall pattern was $L_{RMG} = L_{Sili} = 8$ nm (at $L_{WP} = 9$ nm) (Fig. 6).

arrent ar

XY-direction mask shift

Gate stack

Comments of

Y-direction mask shift

Ideal PR pattern

Misaligned PR

X-direction mask shift

- Compared to the FSFETs, I_{on} improved by 11.8% and C_{gg} increased by 1.8%, which resulted in 8.9% lower RC delay thanks to the optimal wall design (Fig. 7).
- Controlling Y-direction misalignment was critical than in X-direction (Fig. 8).
- MW-NSFETs are expected to be used for logic applications beyond FSFETs.