

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Electronic synapses enabled by epitaxial Hafnia-based ferroelectric field effect memristors on Silicon

A. Dimoulas, Director of Research

National Center for Scientific Research DEMOKRITOS, Athens, Greece

N. Siannas et al., Adv. Funct. Mater. (2023); doi: 10.1002/adfm.202311767

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Name

Energy efficient edge computing

ANNs in hardware

Cross bar arrays-AI accelerators

D. Ielmini, H.-S. P. Wong, Nat. Electron. 1, 333 (2018)

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Hafnia-based fluorite ferroelectrics

Discovered in 2007-first published 2011, Qimonda T. S. Böscke et al, Appl. Phys. Lett. 99, 102903 (2011)

Stabilization of the ferroelectric phase: doping (Si, Zr,..), stress, annealing, film thickness ...

Plasma Assisted MBE/MBD

C. Zacharaki et al., *Appl. Phys. Lett.*, **114**, 112901 (2019)C. Zacharaki et al., *ACS Appl. Electron. Mater.* **4** 2815 (2022)

Ferroelectric programming of the semiconductor resistance

N. Siannas et al., Adv. Funct. Mater. (2023); doi: 10.1002/adfm.202311767

Main Characteristics

European

Commission

Also: M. Halter et al., Commun. Mater 4, 14 (2023)

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Weight update- Identical pulses

European

Commission

with time correlated identical pulses (short delay)

Synapse potentiation and depression is only possible

Time correlated vs isolated pulses

Paired Pulse Facilitation

Short term plasticity

Decode temporary audio/visual info in biological systems

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

STDP-shorter time scales

A. Dimoulas, NCSR DEMOKRITOS

Current driven (RRAM, PCRAM, bio) Energy spent as Joule heating

$$E = V_{progr}I_{progr}\tau$$

Voltage driven (FE) Energy to charge a capacitor

E=QV=2PAV P=20 μC/cm2 *V*=2-4 V *A*=100 x100 nm

	V _{prog}	l _{progr}	Pulse width τ	Energy E (Joule heat)	Energy (charging)	Area
Biological	10 mV	1 nA	1 ms	10 fJ		
RRAM	1V	10 µA	100 ns	1 pJ		
PCMRAM				10 pJ		
FTJ (our work)	2V	0.1 pA	1 ms	0.1 fJ	8 fJ	(100x100 nm)

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Highly resistive memristor \rightarrow suitable for large and dense AI accelerator arrays Low total power consumption / Minimization of sneak paths

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Funding and Future plans

BEOL technology platform based on ferroelectric synaptic devices for advanced neuromorphic processors

Work continues in HORIZON CL4 projects

Scaled Ferroelectric X-bars for Al-driven sensors and actuaTors

2021-2027

Crystalline Oxides for Next Generation Computing and Emerging **Photonic Technologies**

Artificial synapses based on ferroelectric tunnel junctions for neuromorphic and analogue computing

Romanian Recovery and Resilience Plan "ARSYF"

THANK YOU

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Supporting Files

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors A. Dimoulas, NCSR DEMOKRITOS

Epitaxial HZO

- [111] HZO 15 deg off vertical
- 0, 90, 180, 270 deg rotated domains due to 4-fold symmetry of STO substrate

Domain Matching Epitaxy S. Estandia et al., *Cryst. Growth Des.* **20**, 3801 (2020)

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

Retention-ionic effects

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

- HRS drifts to larger resistance
- Memory window increases at longer times !

- O²⁻ acceptors diffuse inside STO and compensate the V_o donors
- STO becomes an intrinsic semiconductor increasing its resistance
- Ionic effects occur at shorter timescales too (< 1 ms)

ON, OFF and intermediate states

- Fatigue : appears in devices requiring large wake-up / corelated with Pr fatigue
- Soft breakdown: related to large cycling bias (>2V)
- Intermediate states cycled and read at low V < 1V) show better endurance