

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Advanced compute scaling: a new era of exciting innovations with nanosheet-based devices and increased interdisciplinary synergies

> Anabela Veloso Imec, Kapeldreef 75, 3000 Leuven, Belgium Email: Anabela.Veloso@imec.be

> > ່ເກາec

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Anabela Veloso

Outline

Introduction

- Potential logic scaling roadmap
- Evolution of transistor device architecture:
 - > entering the nanosheet-based FETs device era
- Introduction of scaling structural boosters like backside power delivery
 paving the way towards a truly functional backside
- \Box New STCO opportunities with the move CMOS \rightarrow CMOS 2.0
- Some key takeaways

Compute needs continue to grow at an ultra-fast speed

Global data growth \Rightarrow requiring more and more density

175 Zettabytes by 2025

Source: Data Age 2025, IDC Global DataSphere, May 2020

Compute systems: evolution towards smart disintegration

TECHNOLOGY

Advanced interconnect solutions offering *SoC-level* connectivity performance

Apple MI Ultra

APPLICATION

Diversity of applications requiring ever increasing compute and memory resources

HP Mobile

HPC

Cerebras Wafer Scale Engine

Potential logic scaling roadmap extension

Context-aware interconnect

CO_2 emissions in recent logic nodes have been increasing \Rightarrow adding environmental impact as a technology FOM: PPAC-E

 *imec.netzero: emissions estimate of imec process nodes representative of foundry nodes
 0.49kgCO₂eq/kWh assumption for electricity

Photo by Laura Ockel on Unsplash

Public version of imec.netzero released on June 30th 2023

Scope I+2 climate impact of logic technologies (normalized)

> go to https://netzero.imec-int.com and sign-up for imec.netzero

imec.netzero is a Web App by imec's SSTS* program – it quantifies the environmental impact of manufacturing IC chips in a HVM fab

with this tool, imec aims to help identify and classify high-impact environmental challenges in the industry

> * Sustainable Semiconductor Technologies & Systems

EUV/High-NA EUV lithography key for enabling cost-effective scaling and lower energy consumption

M. van den Brink, ASML @ plenary talk at VLSI Symposium 2022

A possible transistor's evolution path to help support the logic scaling roadmap

Some key fabrication steps to build GAA nanosheet FETs

Inner spacers & S/D epitaxial growth co-integration: a key block in the flow to build nanosheet FETs

Different S/D epitaxial growth regimes in NSFETs with inner spacers vs. finFETs

Possible extension of nanosheet FETs into forksheet FETs

Nanosheet-based FETs' ultimate scaling limit: the CFET

CFET: Complementary FET

Early device demonstration for enabling CFET architecture

Early device demonstration for enabling CFET architecture at scaled dimensions (CPP=48nm)

Backside Power Delivery Network (BSPDN): a game changer for on-chip power distribution

Moving from standard power distribution defined on the wafer's frontside towards BSPDN

Moving the power delivery network (PDN) to the wafer's backside (BS):

helps to alleviate routing congestion in BEOL, allowing for a separate (and with more room) optimization of signal & power wiring

Several BSPDN implementation options possible

G. Hiblot et al., Short Course IEDM 2022

BSPDN beneficial for enabling lower IR drop values

On-chip IR drop heat maps simulated for a low power 64-bit CPU (A14 HD design rules, V_{DD}=0.7V) show BSPDN is clearly advantageous vs. standard FSPDN, enabling tighter distributions and smaller IR drop values, for both dynamic and static modes

Device demonstration with front & backside connectivity

A.Veloso et al., VLSI 2022

Healthy devices built with connections from both wafer sides

Healthy device characteristics confirmed at EOP for scaled finFETs connected from both wafer sides, with final post-BS anneal(s) able to compensate for BS processing-induced de-passivation effects (& enable improved device characteristics)

$FS \rightarrow BS$ processing: no device impact from \neq thinned Si subs.

23

No device impact for extreme thinned silicon substrates

 \Box Similar FS \rightarrow BS behavior obtained for N/PMOS for extreme thinned Si substrates

BSPDN & cell's scalability: higher potential of BSC-S scheme

With various types of device connectivity options possible
 > BSC-S scheme enables further cell's scalability/cell's height shrinkage

Towards the ultimate scaling limit of NSFETs: the CFET

BSPDN for 3D stacked CMOS such as CFET

BSPDN for CFET is envisioned to be a combination of several of the integration options first considered in the context of NSFETs

Devices with BSC-S: contact resistance & stress evaluation

bNS

Larger contact surface area (from BSC etch optimized for a more wrapped-around type of BSC) also expected to be beneficial for BSC-S's contact resistance (R_{cont})

Partially consuming some source-epi during the BSC-S opening step does not seem to detrimentally impact the bNS's channel strain
A. Veloso et al., IEDM 2022 and IVVIT 2023

Several options available for R_{cont} optimization of BSC-S

There are several interesting options for enlarging the contact surface area for BSC-S (e.g., 'v-shape' etch into S-epi during BSC-S open area), hence also for reducing its R_{cont}
A.Veloso et al., IEDM 2023

(comparison for NSFETs with various BSC-S configurations vs. REF BPR case)

Self-heating (relative to the cell's bottom) assessment of various NSFET configurations highlights the delicate interplay between cell's geometry & materials' thermal properties

Mitigating hotspots with use of optimized BSC-S configuration

An optimized BSC-S configuration can help alleviate hotspots that arise locally, relative to the chip background, in circuit regions with much higher activity factors (e.g., buffer cells in images for a SoC with A14 HD NSFETs)

BSPDN paving the way to a truly functional backside

Functional backside roadmap

Enhancing system performance by adding devices/migrating system functions to the wafer's backside

VDD

More compact vertical ESD diodes with BS contacts

More compact ESD vertical diodes with BS contacts

* improved latch-up immunity thanks to lower parasitic bipolar current gain (β) values vs. FS only versions

Clear benefits also obtained by moving clock signal to the BS

Global routing with a 16×16-grid distributed clock's layout design Exploration of introducing BS routing for the clock's Htree portion of a HP CPU at A14 design rules:

Lower clock latency when clock implemented with (partial – Htree portion) BS routing
 > moving larger amounts of clock signal to the BS expected to lead to further latency reduction, needing careful optimization for optimum BS (power and signal) routing

New STCO opportunities with BS technology: moving towards a heterogeneous CMOS platform

J. Ryckaert, ITF Japan 2022; A. Veloso et al., IEDM 2023

Some key takeaways

Logic standard cell scaling remains at the core of the compute roadmap supported by:

- ✓ continued dimensional scaling
- ✓ introduction of new device architectures and materials
 ➢ entering the nanosheet-based FETs era (single-level → 3D stacked)
- adoption of backside power delivery and the use of both wafer sides
 paving the way towards a truly functional backside roadmap
 envisioning the move from CMOS to CMOS 2.0
- ✤ Power-Performance-Area-Cost (PPAC) → PPAC-Environmental impact (PPAC-E)

Acknowledgements

Imec's research teams, 300mm pilot line, and Core CMOS partners

The European Commission and Regional Authorities for their support of European collaborative projects

Thank you!

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu