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Outline

❑ Introduction

❑ Potential logic scaling roadmap

❑ Evolution of transistor device architecture:

➢ entering the nanosheet-based FETs device era

❑ Introduction of scaling structural boosters like backside power delivery

➢ paving the way towards a truly functional backside

❑ New STCO opportunities with the move CMOS → CMOS 2.0

❑ Some key takeaways
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Compute needs continue to grow at an ultra-fast speed

Data source: J. Sevilla et al., https://doi.org/10.48550/arXiv.2202.05924

10

10000

10000000

1E+10

1E+13

1E+16

1E+19

1E+22

1E+25

2x every ~2 years

1025

1022

1019

1016

1013

1010

107

104

101

T
ra

in
in

g 
co

m
p
u
te

 (
F
L
O

P
s)

Machine learning model dates

Large scale era

Deep learning era 
(2x every ~6 months)

3

1957 19621962 1977 1982 1997 2012 2017 20221972 1992 20071952 1967 1987 2002



Global data growth  requiring more and more density

Source: Data Age 2025, IDC Global DataSphere, May 2020
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Compute systems: evolution towards smart disintegration

Advanced interconnect 

solutions offering SoC-level

connectivity performance

TECHNOLOGY

Diversity of applications

requiring ever increasing 

compute and memory

resources

APPLICATION

HP Mobile

Apple M1 Ultra

AI/GPU

Nvidia H100
Cerebras

HPC

AMD Mi300
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Potential logic scaling roadmap extension

Context-aware interconnect

Continued dimensional scaling Metal 
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CO2 emissions in recent logic nodes have been increasing 

 adding environmental impact as a technology FOM: PPAC-E

*imec.netzero: emissions 

estimate of imec process 

nodes representative of 

foundry nodes

0.49kgCO2eq/kWh 

assumption for electricity

Photo by Laura Ockel

on Unsplash
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Public version of imec.netzero released on June 30th 2023

❑ imec.netzero is a Web App

by imec’s SSTS* program – it

quantifies the environmental

impact of manufacturing IC

chips in a HVM fab

➢ with this tool, imec aims to

help identify and classify 

high-impact environmental

challenges in the industry

* Sustainable Semiconductor

Technologies & Systems➢ go to https://netzero.imec-int.com and sign-up for imec.netzero
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M. van den Brink, ASML @ plenary talk at VLSI Symposium 2022

EUV/High-NA EUV lithography key for enabling

cost-effective scaling and lower energy consumption
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A possible transistor’s evolution path to help support the 

logic scaling roadmap

❖

Si

STI

NMOSPMOS

Triple-gate finFETs Gate-all-around 
(GAA) vertically 
stacked lateral 

nanosheet (NS) FETs

Forksheet (FS)
FET device

configuration

N/PMOS 
devices stacked 
on top of each 
other (CFET)
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Some key fabrication steps to build GAA nanosheet FETs

HfO2

Si

EWF metal(s)/W

fins formation with 
Si/SiGe multi-layers

dummy 
gate

NS release 
gate stack 
deposition

S/D epitaxial 
growth

B-SiGe

P-Si

dummy gate 
removal

Si SiGe

Si

SiGe

Si

STI

SiN liner

inner spacers 
formation

dummy gate 
patterning

B-SiGegate
spacers

NMOS

PMOS

gate spacers 
formation

Inner 
spacers
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Inner spacers & S/D epitaxial growth co-integration: 

a key block in the flow to build nanosheet FETs

cavity etch

B-SiGe

Insp

B-SiGe

Si

Si

Insp

Si

SiGe
Si

Si

Si

❑ Different S/D epitaxial growth regimes in NSFETs with inner spacers vs. finFETs

NS exposed sides

A. Veloso et al., ICICDT 2022 12



Possible extension of nanosheet FETs into forksheet FETs
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: the CFETNanosheet-based FETs’ ultimate scaling limit

CFET: Complementary FET 
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Early device demonstration for enabling CFET architecture

assessing only the 
CFET’s bottom device

Gate

V0

M0

bottom 
S/D

bottom NS

M1

M0

top 
S/D

top NS Gate

assessing only the 
CFET’s top device

CFET architecture 
(with 1NS per device)

bottom device top device
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Early device demonstration for enabling CFET architecture 

at scaled dimensions (CPP=48nm)
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Backside Power Delivery Network (BSPDN): 

a game changer for on-chip power distribution

Backside (BS) PDN 

Si

signalFrontside (FS) 
power delivery network (PDN) 

& signal
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Moving from standard power distribution

defined on the wafer’s frontside

VDD VSS

Power
delivery

FEOL

Signal
routing

VDD VSS

❑ Moving the power delivery network
(PDN) to the wafer’s backside (BS):

helps to alleviate routing congestion in BEOL,
allowing for a separate (and with more room)
optimization of signal & power wiring

BEOL

FEOL

towards BSPDN
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G. Hiblot et al., Short Course IEDM 2022

Several BSPDN implementation options possible
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❑ On-chip IR drop heat maps simulated for a low power 64-bit CPU (A14 HD design
rules,VDD=0.7V)

BSPDN beneficial for enabling lower IR drop values

.....

A. Veloso et al., VLSI 2022, TED 2022

Si substrate
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+ signal
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Signal

❑ On-chip IR drop heat maps simulated for a low power 64-bit CPU (A14 HD design
rules, VDD=0.7V) show BSPDN is clearly advantageous vs. standard FSPDN, enabling
tighter distributions and smaller IR drop values, for both dynamic and static modes
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Device demonstration with front & backside connectivity

Frontside Metal 1 (FSM1)

V0

M0A

4fin device

nTSV

Backside
Metal 1 
(BSM1)

A. Veloso et al., VLSI 2022

VBPR
Buried Power

Rail (BPR)
thinned

Si
substrate
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❑ Healthy device characteristics confirmed at EOP for scaled finFETs connected
from both wafer sides, with final post-BS anneal(s) able to compensate for BS
processing-induced de-passivation effects (& enable improved device characteristics)
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In-line measurements after the various stages of fabrication:
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FS→ BS processing: no device impact from  thinned Si subs.
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A. Veloso et al., IEDM 2022    
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❑ In-line measurements after the various stages of fabrication:❑ Similar FS → BS behavior for N/PMOS built on wafers with  thinned Si thicknesses
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❑ Similar FS → BS behavior obtained for N/PMOS for extreme thinned Si substrates

ttSi 370nm → 20nm 
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BSPDN & cell’s scalability: higher potential of BSC-S scheme

❑ With various types of device connectivity options possible

➢BSC-S scheme enables further cell’s scalability/cell’s height shrinkage
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Towards the ultimate scaling limit of NSFETs

n-S epi

NSFET:

PMOS

gate

p-S epi

n-NS

p-NS

p-D epi

CFET:

NMOS

PMOS

n-NS

p-S epi
gate

p-NS

p-D epi

: the CFET
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VSSVDD

TSVM

TSVM

BSC-S

VDD

VSS

BSC-S

❑ BSPDN for CFET is envisioned to be a combination of several of the integration
options first considered in the context of NSFETs

BSPDN for 3D stacked CMOS such as CFET

A. Veloso et al., IEDM 2023
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➢ Partially consuming some source-epi during the BSC-S opening step does not seem to
detrimentally impact the bNS’s channel strain

➢ Larger contact surface area (from BSC etch optimized for a more wrapped-around type
of BSC) also expected to be beneficial for BSC-S’s contact resistance (Rcont)

Devices with BSC-S: contact resistance

Szz

BSC-S
etched 5nm

deep into S-epi

wide & 
increasingly 

deeper BSC-S

wider
BSC-S

Szz

bNS

BSC-S with larger 
contact surface area

FSC-S

BSC-S

& stress evaluation  

A. Veloso et al., IEDM 2022A. Veloso et al., IEDM 2022 and IWJT 2023 28



Several options available for Rcont optimization of BSC-S

❑ There are several interesting options for enlarging the contact surface area for BSC-S
(e.g., ‘v-shape’ etch into S-epi during BSC-S open area), hence also for reducing its Rcont

‘v-shape’ etch into initial 
S-epi  (low  epi growth)

 BSC metallization

reference 
BSC-S

configuration
BSC-S BSC-S

low  (extra) epi

S-epi
S-epi

A. Veloso et al., IEDM 2023
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Self-heating for various BSC-S configurations vs. BPR reference

thermal cross-section maps provided via a vertical cut through the source terminal

❑ Self-heating (relative to the cell’s bottom) assessment of various NSFET configurations
highlights the delicate interplay between cell’s geometry & materials’ thermal properties

- A14 HD design rules -
2 4 50 C at 1mW/transistor31
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A14 HD design rules

(CPP=42nm, Lgate=14nm, M1 pitch=18nm)

(comparison for NSFETs with various BSC-S configurations vs. REF BPR case)

A. Veloso et al., IEDM 2023
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❑ An optimized BSC-S configuration can help alleviate hotspots that arise locally,
relative to the chip background, in circuit regions with much higher activity factors
(e.g., buffer cells in images for a SoC with A14 HD NSFETs)

Mitigating hotspots with use of optimized BSC-S configuration 
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A. Veloso et al., IEDM 2023 31



J. Ryckaert, ITF Japan 2022; A. Veloso et al., IEDM 2023

BSPDN paving the way to a truly functional backside

Backside Power 
Delivery

Backside Global 
Interconnect

Device 
Backside Extension

Backside Devices

Functional backside roadmap

➢ Enhancing system performance by adding devices/migrating system
functions to the wafer’s backside
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More compact vertical ESD diodes with BS contacts 
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K. Serbulova et al., VLSI 2022

❑ More compact ESD vertical diodes with BS contacts

 67% 
area

FS n+

BS p+
p-well

n+ p+

p-well

FS pad

BS

p+

nTSV

pad

❖ improved latch-up immunity thanks to lower parasitic bipolar current gain ()
values vs. FS only versions
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❑ Lower clock latency when clock implemented with (partial – Htree portion) BS routing

➢ moving larger amounts of clock signal to the BS expected to lead to further latency
reduction, needing careful optimization for optimum BS (power and signal) routing

Exploration of introducing BS routing for the clock’s 
Htree portion of a HP CPU at A14 design rules:

Clear benefits also obtained by moving clock signal to the BS

BSM2, BSM3

Global routing with a 
1616-grid distributed 
clock’s layout design

A. Veloso et al., IEDM 2023 34



J. Ryckaert, ITF Japan 2022; A. Veloso et al., IEDM 2023

New STCO opportunities with BS technology: 

moving towards a heterogeneous CMOS platform

hybridization

DTCO
STCO

new materials

new processes

new devices

3D-SoC

Seq-3D

BS

technologies

versatile SoC technology platforms

35

CMOS 2.0 = same ‘look & feel’ as a classical CMOS 
platform but offering versatility for system optimization

heterogeneitygranularity



Some key takeaways

❑ Logic standard cell scaling remains at the core of the compute roadmap
supported by:

✓ continued dimensional scaling 

✓ introduction of new device architectures and materials

➢ entering the nanosheet-based FETs era (single-level → 3D stacked)

✓ adoption of backside power delivery and the use of both wafer sides

➢ paving the way towards a truly functional backside roadmap

➢ envisioning the move from CMOS to CMOS 2.0 

❖ Power-Performance-Area-Cost (PPAC) → PPAC-Environmental impact
(PPAC-E)
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