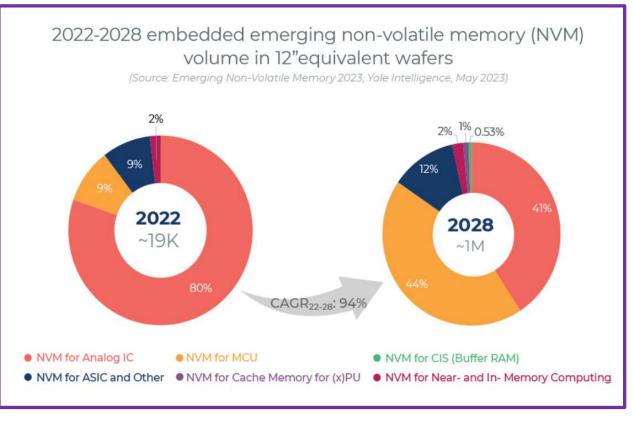


EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Enabling new research paths with embedded PCM

Andrea Redaelli Fellow – ePCM Architecture Technical Director STMicroelectronics, central TR&D, Agrate Brianza (IT)

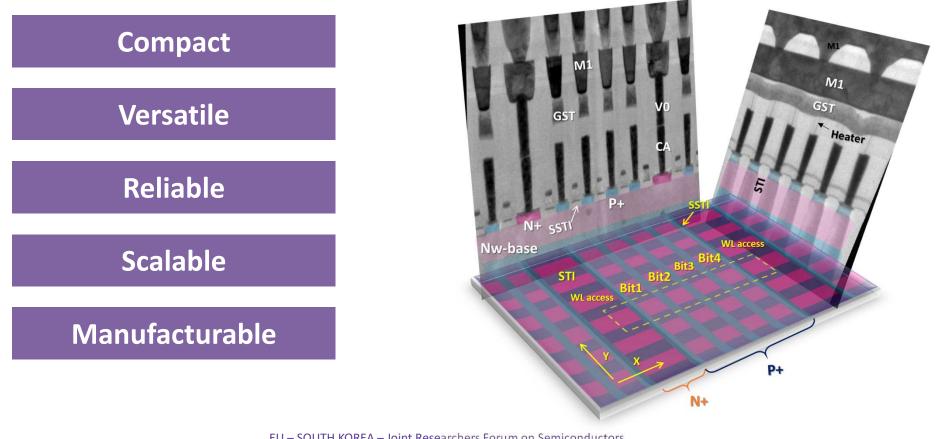
EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Andrea Redaelli


ernational Cooperation

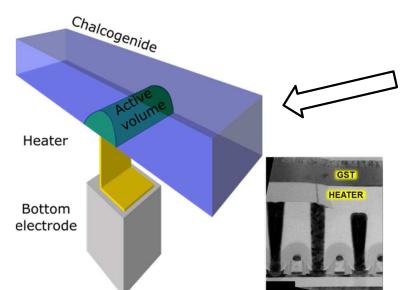
eNVM market trend

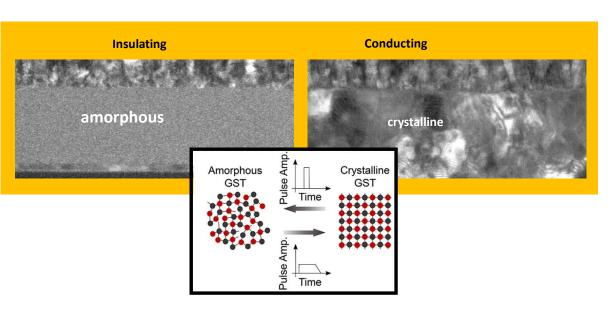
- Expanding emerging eNVM market
- Strong IOT, Industry 4.0 and automotive trends
- Flash NVM below 28nm extremely complex
- Room for emerging NVM below 28nm

High density eNVM landscape



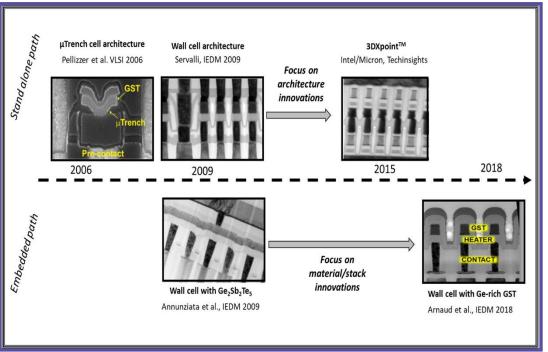
	PCM	STT-MRAM		RRAM		
Current flow	Uni-directional	Bidirectional		Bidirectional		
Working principle	Phase transition (temperature)	Free Layer MAG orientation (spin)		Oxide vacancies filament		
Selector element	BJT	MOS		MOS		
I _{ON} /I _{OFF} (typ)	Large (100x)	Small (2x)		Large (>10)		
Process complexity	Medium	High (MTJ stack)		Low-medium		
Reliability	High	High		Medium-Low		
Major limitations	Programming current	Magnetic Field immunity		Erratic bits / variability		
Physical cell size [µm ²]	0.019 at 28 nm	0.041- 0.045 at 22 nm	0.033 at 16nm	0.024 at 14 nm	0.042 at 28 nm	0.02x at 12 nm
Grade	G0 / qualified	G1 / qual	G1 / qual	G0 / not qual	G1	Indust. / not qual
		FLUBAL	tsmc	SAMSUNG	infineon	tsmc





PCM Introduction

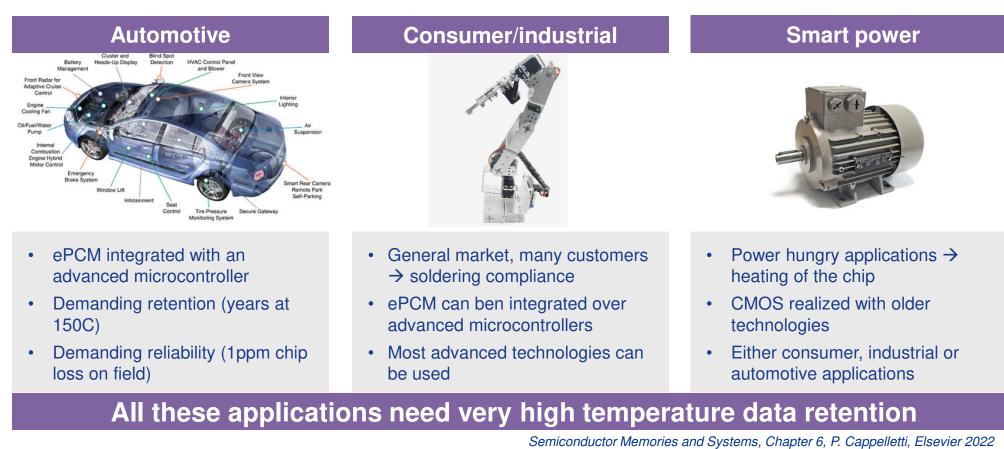
PCM device operation



- Reversible switching of chalcogenide material phase (Ge₂Sb₂Te₅)
- Amorphous insulating and crystal conducting
- Temperature increase by Joule heating enable phase change
- A simple resistor can be easily integrated in the BEOL

PCM evolution paths

Nokia Asha phone including standalone PCM (Numonyx-Micron)

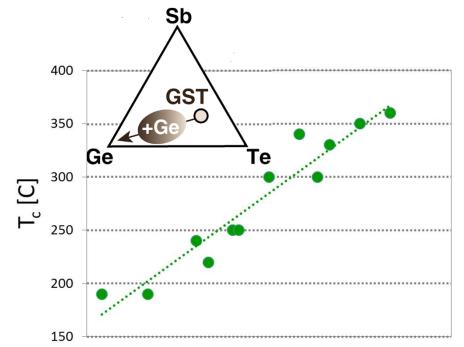

1.5 TB Optane SSD by Intel

- PCM for standalone focused on high density 3DXpoint architecture
- PCM for embedded memories instead required material innovations

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics** International Cooperatio

PCM in embedded applications

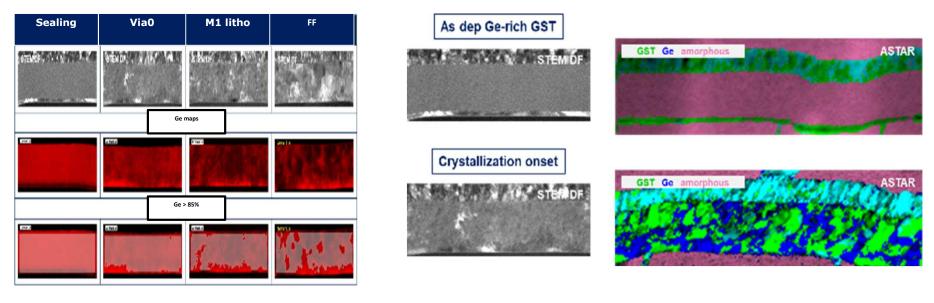
EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics**



Material engineering for ePCM

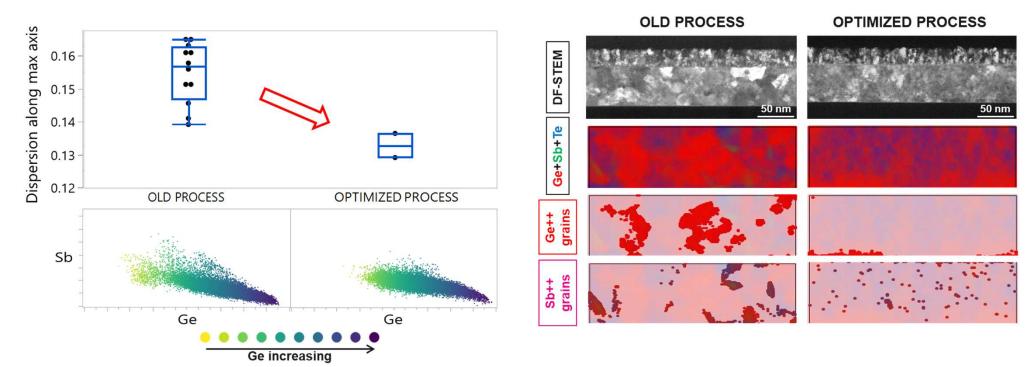
"Semiconductor Memory and systems", P. Cappelletti et al., Chapter 6, Elsevier 2022

- Improved amorphous state retention
- Automotive specs (some years at 150C)
- Soldering compliance (2min at 260C)
- Automotive-grade defectivity (target of 1ppm product level)



- No way with commonly used $Ge_2Sb_2Te_5$ (T_C close to 150C)
- Higher Ge content in GST alloys needed

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics** % Ge


Ge enrichment implications

- As-dep Ge-rich GST uniform and amorphous in phase
- During crystallization, separation in Ge₂Sb₂Te₅ and Ge occurs
- Ge clustering is maximum at the end of the flow
- Dedicated optimizations at process and algo levels needed

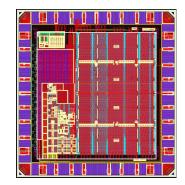
Process optimization

- Dispersion along max axis reduced, indicating less segregated material
- This is confirmed by EELS images, showing finer texture and fewer clusters (both Ge and Sb)

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics** E. Petroni et al. Frontiers of Physics (2022)

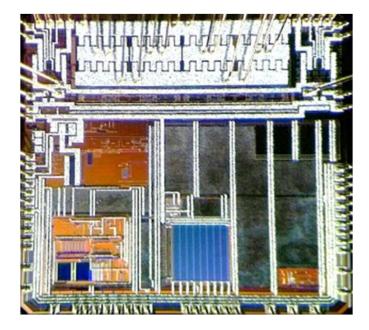
Available technologies and applications

Available technologies

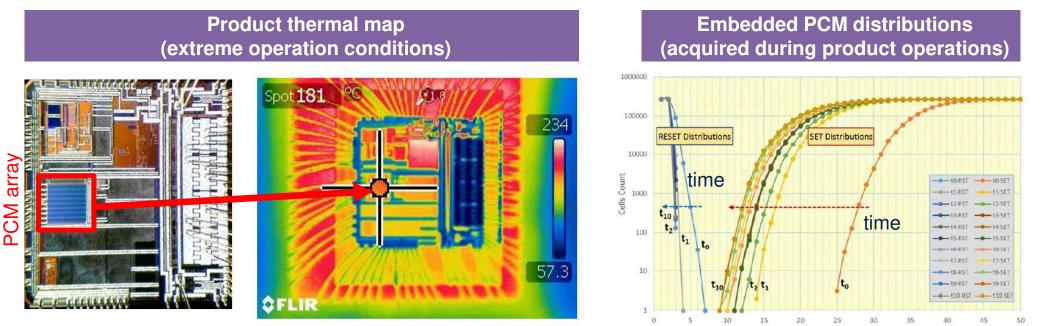


- ePCM in 28 nm FD-SOI developed for automotive applications
- ePCM in **18 nm FD-SOI** in development for general purpose MCU
 - G. Croce,2022 IEEE IMW doi: 10.1109/IMW52921.2022.9779244
 - N. Grossier et al., 2023 VLSI, doi: 10.23919/VLSITechnologyandCir57934.2023.10185252
 - A. Conte et al, 2023 IEEE IMW, doi: 10.1109/IMW56887.2023.10145983

https://www.st.com/en/automotivemicrocontrollers/stellar-integrationmcus.html


2MB ePCM NVM IP layout for GMP product Designed in 18nm FDSOI technology

BCD motor control


Fully integrated SOC for miniaturized motion control with embedded microcontroller, non-volatile memory (ePCM) and 40V power device

- 110 nm BCD technology platform
- ARM Cortex-M4 with DSP for numeric torque generator
- Memory: 32KB ePCM and 8KB RAM
- Converters: 2x DACs (10 bits and 15 bits), 1x ADC (12 bits)
- 1.8V/ 3.3 V/ 5 V voltage regulators
- Integrated power stages: 4x half-bridges (40 V max 2.5A)
- 8x 40 V gate drivers for external power devices

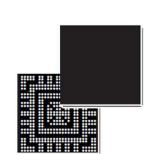
Data Retention secured (> 24 hrs) under very extreme thermal conditions (Tj,max > 200 C, PCM Array T = 180 C!)

> EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics**

G. Croce, IMW 2022, Dresda 15

Cells Current [uA]

International Cooperat On Semiconductors



28 nm - 20.5 MB for automotive

- Microcontroller designed in 28 nm FD-SOI platform
- ePCM NVM qualified for automotive applications
- OTA feature available for code update
- Operating temperature up to 150C

Commission

https://www.st.com/en/automotive-

microcontrollers/sr6g7c4.html#documentation

Silicon on 28 nm ePCM

Technology (STELLAR G7)

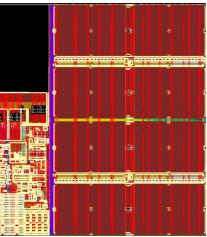
EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics**

BGA476/292 packages

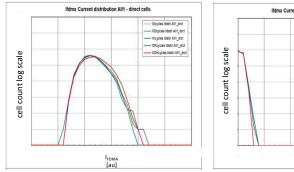
A. Conte, IMW 2023, Monterey

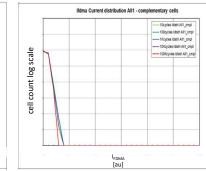
•

Macro designed in 18 nm FD-SOI platform


• ePCM measured and under qualification

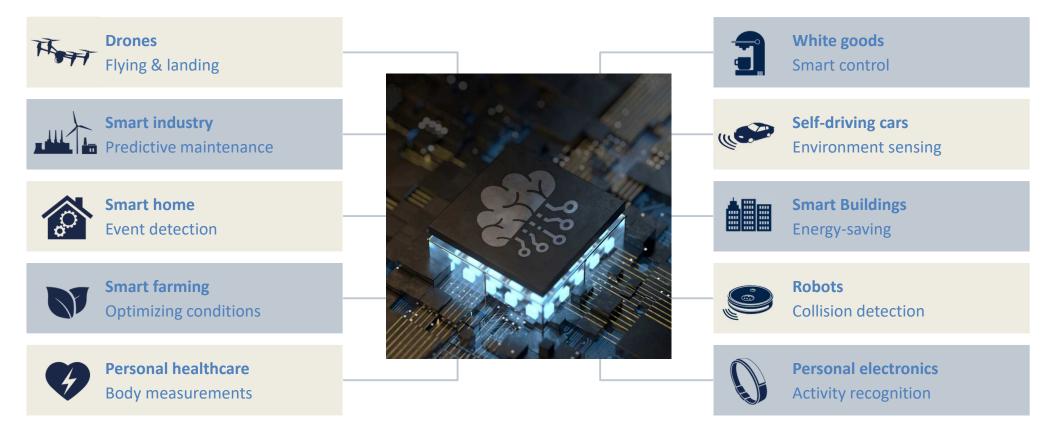
Macro IP available for product roadmap


18 nm - 2 MB ePCM for GPM



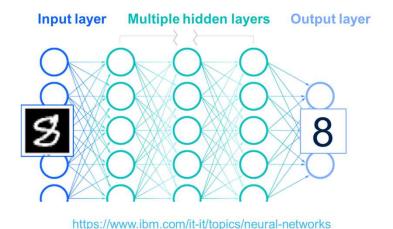
Condition	Spec			
External operating voltage V_{CC}	1.62 V - 3.6 V			
Cycling temperature (T _J)	-40ºC: +140ºC			
JEDEC soldering compliancy	Yes			
Codo momony roliability	Cycling: 1K-write			
Code memory reliability	Retention: 10y @ 140C after 1K-write			
Data mamory reliability	Cycling: 100K-write			
Data memory reliability	Retention: 2y @140C after 100K-write			

2MB ePCM NVM IP layout for GMP product Designed in 18 nm FDSOI technology

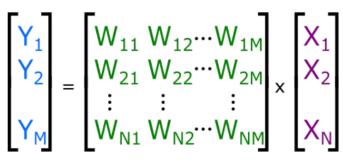


Opportunities and future developments

AI as a key growing trend

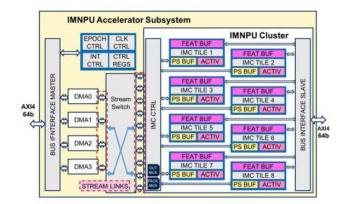


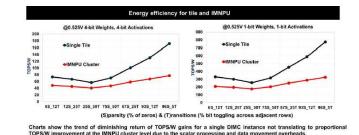
EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Andrea Redaelli, **STMicroelectronics**


19

CNN and hardware

Function we want to realize in hardware

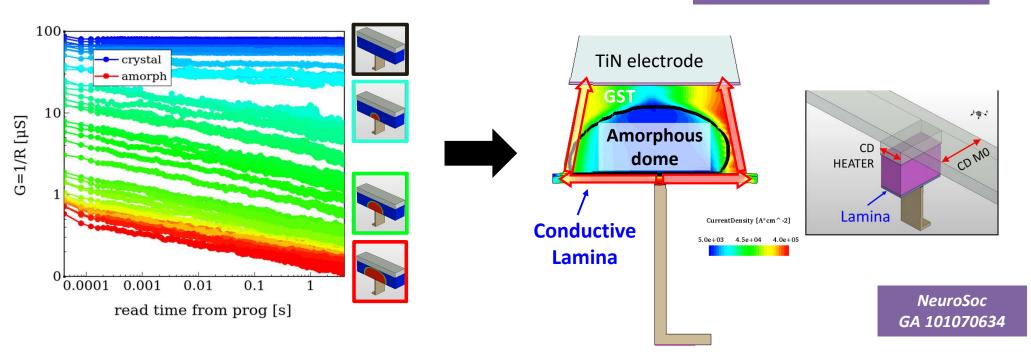

- Neural network as a sequence of neuron layers connected by synapses
- Once the NN learning phase has been done, a set of weights is defined and used for inference for classification
- In both learning and inference phases, the MVM is a key operation that is power and time inefficient when operated in the CPU
- Goal: embedded MVM multiplication in a dedicated hardware



PCM for SRAM-based AI accelerators

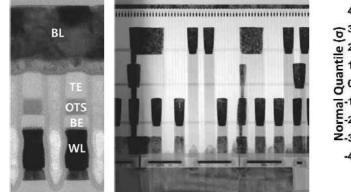
- D-IMC done in SRAM as a short-time MVM enabler in AI accelerators
- Very good performances obtained at NPU level in 18 nm FD-SOI ST technology
- This architecture can take advantage of ePCM:
 - ePCM can be embedded in a SoC together with the processor (no interface bottleneck in data movement)
 - ePCM today guarantees the best density among the eNVM (0.019um²), thanks to the unipolar mechanisms of operation (BJT/diode selection)

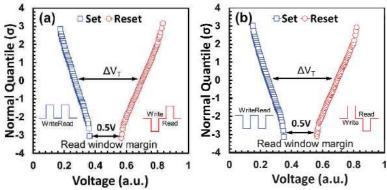
G. Desoli et al., "16.7 A 40-310TOPS/W SRAM-Based all-digital Up to 4b In-Memory Computing Multi-Tiled NN Accelerator in FD-SOI 18nm for Deep-Learning Edge Applications," 2023 ISSCC, doi: 10.1109/ISSCC42615.2023.10067422.



Rheostatic PCM cell for AIMC

ePCM wall cell


PCM-AI rheostatic cell


PCM-AI rheostatic cell cell \rightarrow conduction mainly in crystalline GST thanks to the lamina

European Commission

Hynix – IEDM 2018, 2022 Samsung – IEDM 2023 Micron – IEDM 2023 IMEC – IEDM 2021

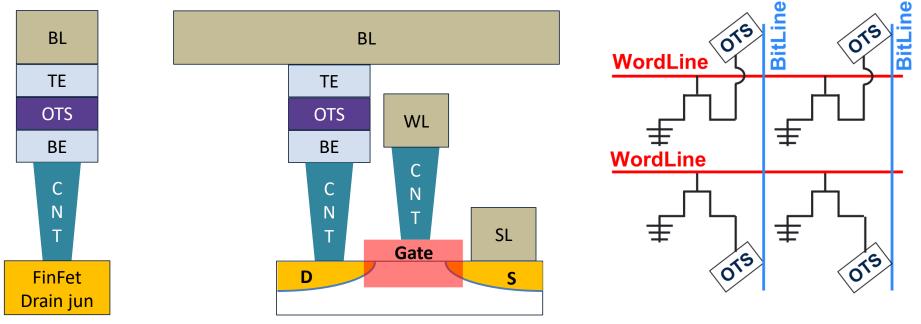

Fig. 1. Cross-sectional TEM Image of (a) 16nm SOM Cell and (b) the entire device of 64Gb SOM. (not including the metal lines of back-end.)

Fig. 2. The distribution of V_T and read window margin depending on the bias pulse for set and reset states: (a) Case of positive direction in read pulse. (BL is cathode.) (b) Case of negative direction in read pulse. (BL is anode.)

- OTS working as memory (Selector Only Memory)
 - Same polarity between prog and read \rightarrow low Vth
 - Opposite polarity between prog and read \rightarrow high Vth

FinFET selected eSOM

Very low process cost (1/2 added masks) Very high density: low Iprog → small selector area Coupling with a MOS selector enable low voltage operation

Need to partner with a FinFET provider International Cooper On Semiconductors

ePCM is one of the candidates for eNVM below 28 nm

Material and algo innovations to achieve demanding reliability

ePCM is a reality, ST offers solutions at various technologies

Future developments on AI (IMC and spiking NN) and integration with FinFET

THANK YOU

European Commission

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu