

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Research on FD-SOI and nonvolatile memory

Olivier Faynot

Silicon Component division General Manager

CEA-Leti

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Name The cost of moving data

Bill Dally, "To ExaScale and Beyond", 2010

Commission

The High Cost of Data Movement Fetching operands costs more than computing on them **x800 more!** 20mm 64-bit DP DRAM 26 pJ 256 pJ 16 nJ Rd/Wr 20pJ 256-bit Efficient 500 pJ off-chip link buses 50 pJ 256-bit access 8 kB SRAM 1 nJ

28nm

[J. Wang – ISSCC'19]

>1000x

by

2030

CMOS scaling

Memory technologies

Disruptive Computing

Chiplet & 3D System

FD-SOI Technology

	22FDX	14nm FInFET	28nm Bulk	45nm PDSOI
f _⊤ n-FET [GHz]	347	314	310	296
f _{max} n-FET [GHz]	371	180	161	342
f _T p-FET [GHz]	242 275 (mmWave)	285	185	-
f _{max} p-FET [GHz]	288 299 (mmWave)	140	104	-

Drivability

RBB: Reverse Body Bias FBB: Forward Body Bias ULP: Ultra-Low Power VHP: Very High Performance

Energy Efficiency gain with Adaptative Back Bias Coperation

Dolphin & CEA-Leti, ISSCC 2021

Biased Die area: 2mm²

- Back bias effect gain similar as switching to the next node (55% Power gain)
- Required ABB area almost negligeable

• Available/planned technologies:

28nm

22nm

Future Needs

18nm

12nm

GLOBAL FOUNDRIES

Customer needs:

- Denser node for competitivness
- High Voltage devices, eNVM
- Improvement of RF performance (F_T, F_{max} >450GHz)
- O Enhanced Back Bias effect

FD-SOI : Selected by Worldwide Key Players

FD-SOI Technology Roadmap

FD-SOI NextGen: Key features

	10FD		
Vnom	0.75V		
Pitches (CPP/Mx)	68/48nm		
Body biasing	Bi-directional		
Embedded NVM	PCRAM		
High Voltage dev.	Up to 3.3V		
RF/Connectivity	F _T /F _{max} >450GHz		

Intrinsic gain vs 28FD	
Speed at same power	1,9x
Power at same speed	÷5
Transistor Density	x4

Will be the most advanced node with Gate First approach!

Why Emerging Resistive Memories?

High dense on-chip memory

DRAM access is at least **1500x** more costly than a MAC operation in NN accelerators

[F. Tu, et al., 2018 ACM/IEEE]

Zero stand-by power thanks to non-volatility

10x better energy efficiency than embedded flash thanks to resistive memories

	NOR FLASH	MRAM	PCRAM	OxRAM	FeRAM (PZT)	FeRAM (HfO ₂)
Programming power	~200pJ/bit	~20pJ/bit	~300pJ/bit	~100pJ/bit	~10fJ/bit	~10fJ/bit
Write speed	20 µs	20 ns	Power Reduct 10-100 ns	ion by 10000! 10-100 ns	<100ns	14ns @ 2.5V (SONY) 4ns @ 4.8V (LETI)
Endurance	10 ⁵ - 10 ⁶	10 ⁶⁻ 10 ¹⁵	10 ⁸	10 ⁵ – 10 ⁶ on 16 kbit	> 10 ¹⁵	> 10 ¹¹ single device 10 ⁶ - 10 ⁷ on 16 kbit
Retention	> 125°C	85°C - 165 °C	165°C	> 150°C	125°C	125°C
Extra masks	Very high (>10)	Limited (3-5)	Limited (3-5)	Low (2)	Low (2)	Low (2)
Process flow	Complex	Medium	Medium	Simple	Simple	Simple
Multi-Level Cell	Yes	No	Yes	Yes	No	No
Scalability	Bad	Medium	High	High	Medium	Poor (2D) High (3D)

Memory activity focus on embedded NVM for NOR flash replacement

Energy Efficiency is far from biological Syste

CBRAM

M. Suri et al, IEDM 2011.

PCM

In memory computing

European

Commission

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Olivier FAYNOT **, CEA-Leti**

Chiplets: the new IC design paradigm

Up to 100x gain on Power Efficiency with 3D

Olivier FAYNOT , CEA-Leti

Heterogeneity and functionality

3D Tool Box for Chiplet integration

3D pitch reduction for bandwidth increase

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Olivier FAYNOT , **CEA-Leti**

Benchmarking on 3D

European Commissior

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Olivier FAYNOT , **CEA-Leti**

- FD-SOI technology well adapted for Power efficient Analog/RF applications
- 10 and 7nm nodes under definition, with 4 major constraints:
 - Improvement of RF performance
 - Enhanced Back Bias effect
 - High Voltage devices
- eNVM essential for SoC and AI applications

THANK YOU

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors