

EU - SOUTH KOREA – Joint Researchers Forum on Semiconductors

Silicon Carbide Electronics for Advanced Power, Sensing and System Integration

Michael Jank, Head of Department R&D Semiconductor Devices and Processing Fraunhofer IISB, Erlangen, Germany

EU – SOUTH KOREA - Joint Researchers Forum on Semiconductors Name

Introduction to IISB

Electron Devices Prof. Dr.-Ing. habil. Jörg Schulze Director of IISB

Power Electronics Prof. Dr.-Ing. Martin März

Friedrich-Alexander-Universität

Erlangen-Nürnberg

• Silicon Carbide Technologies at Fraunhofer IISB

• MOS and Bipolar SiC Power Devices

• High-Temperature SiC CMOS Technology

Materials Properties of SiC

high frequency, current density

Power Devices on SiC

• IISB's Integrated Vertical Value Chain

SiC Process Environment

European Commission

Sic Power Devices

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, **Fraunhofer IISB**

ofei

Power Devices on SiC

Bipolar and MOS Power Devices

Michael Jank, Fraunhofer IISB

IISB

• Advanced Trench Technologies

1.2 kV TrenchMOS

FIB cross-section of active area

Blocking voltage in V

Electrical Performance

1200

Power Devices on SiC

К

QΚ

• Solid-State Circuit Breaker

- Self-Supplied
- Self-Sensed
- Self-Sustained

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, Fraunhofer IISB

pJFE'

 V_{AK}

Power Devices on SiC

- Self-sensed sub-µs switching

Sic CNOS Technology for harsh environments

TRATATION IN

European

Commission

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, Fraunhofer IISB

12

High-Temperature SiC Circuits

13

High-Temperature SiC Circuits

Technology overview

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, **Fraunhofer IISB** 14

💹 Fraunhofer

IISB

• CMOS inverters up to 550 °C

Silicon Carbide CMOS Technology

European

Commission

Romijn et al. IEEE Transactions on Electron Devices, 2022

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, **Fraunhofer IISB**

IISB

16

(d)

10

Q [V]

(c)

🜌 Fraunhofer

5

MILL MILL

Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology Romijn et al. Microsystems & Nanoengineering, 2022

European

Commission

UFFERS

8x8 UV pixel array with integrated read-out electronics

Smart System Integration on SiC

ADDRESS GENERATOR INTERNET

8X8 PIXEL ARRAY

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors Michael Jank, Fraunhofer IISB

High-Temperature SiC Circuits

in cooperation with

LDMOS (W = 30 μ m, L = 5 μ m)

Breakdown at RT

At Vos= 0V

IISB

SiC Smart Power Integration

Bipolar Junction Transistor Output Characteristics

 $I_{base} = 2\mu A$ to $12\mu A$

Furonear Commission

80

Collector Current, I_c (µA) 05 05 09 09

0

0

2

0.2 0.0 40 60 80 100 120 140 160 180 200 6 8 20 10 0 Collector to Emitter Voltage, V_{CE} (V) Drain to Source voltage, V_{DS} (V)

2.0 1.8

1.2

High-Temperature SiC Circuits

- Access
 - Customer designs are combined in a mask set and processed jointly
 - Process cost are distributed according to areal share
 - Each customer gets delivered single chips of their layout
 - Allows for participation in CMOS process flow starting from approx. 5% of total processing cost

High-Temperature SiC Circuits

• Process Options

Module	Description	
RESURF I ²	Implantation Layer for Integration of CMOS with High-Voltage Power Switches towards Smart Power Systems	
UV I ²	Implantation Module for monolithically integrated UV-Diodes	
CUSTOM I ²	Customized Implantations for Application-Specific Devices	
AL METAL	Low-Temperature Metallisation with Low Electrical Resistivity	
GRIND	Wafer Backthinning for Advanced Applications and Optional Integration of Vertical Devices	
SINTER	Backside Metallization for Silver Sintered High-Temperature Die Attach	

- Unique SiC processing line for power, mixed-signal CMOS and sensors
- Research and development into advanced power devices
- Electronics for harsh environment
 - Available via EUROPRACTICE
- Quantum sensing and computing based on Si vacancies in SiC

THANK YOU

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

EU – SOUTH KOREA – Joint Researchers Forum on Semiconductors