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◼ Main technologies, trends, challenges, examples
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Introduction

Autonomous device

Outputs➢ Mechanical

➢ Electromagnetic

➢ Thermal…

 Market growth on connected devices : IoT (estimated 40 billion devices by 2025), 
healthcare, wearables, home automation…

 Energy supply is essential (<mW, tens of µW) Energy Harvesting

 EH is important in applications with specific requirements : simple battery is not enough, 
cords would increase the cost / complexity, too many devices, harsh environment, 
implants…   
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Introduction: Technologies covered so far…

Mechanical EH

Electrostatic

Piezoelectric

Electromagnetic
Solar EH

Thermal EH

Energy storage (µbatteries)

RF EH / wireless power transfer

Micro power management
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Energy harvesting technologies 
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Mechanical EH : Piezoelectric conversion

 Harvesting principle based on mechanical resonators

 Applications are linked to mechanical vibrations harvesting (movements)

 Devices tuned at a specific vibration frequency 

 Devices are easy to fabricate

 Macro-devices and MEMS are actually on the market

 Most used materials (commercial) : PZT (lead/toxic), PVDF

• Principle

Resonant cantilever covered by a piezoelectric layer and a
inertial mass attached. As the cantilever is bent, strain is
transferred to the piezo layer asymmetric charge
distribution (Voltage)

MIDE (PZT)

TE Connectivity

(PVDF)

piezo
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Mechanical EH : Piezoelectric conversion

 Current trends:

 Increase input bandwidth / reduce working frequency for portable applications

 Frequency-up converter (rotating systems)

P. Pillatsch et al., S&A  A 2014
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Mechanical EH : Electrostatic conversion

 Energy density is low at macro level but increases at micro scale (relative capacitor 
variation increases)

 Main challenge is related to the reliability of the material to keep the charges 

• Principle

One electrode of the capacitor is charged (electret, 
triboelectricity…) and the relative movement between 
the two electrodes causes a variation of electric 
capacity charges movement
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Mechanical EH : Electrostatic conversion

Y. Lu et al., J. MEMS  A 2018

380µm

(Cavity length= 3mm)

Adding the mini ball (32 mg) improves the performance

at lower frequencies

Energy / cycle

 Current trends:

 MEMS device – Increase input bandwidth

 impact frequency up converter (stoppers & balls)
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Mechanical EH : Electromagnetic conversion

 Macro-devices are vastly developed and are on the 
market

 MEMS devices less explored due to drastic drop in 
performance

 Use of rare earth-based magnetic NdFeB

• Principle: Faraday’s Law

Relative motion – magnetic field & coil (or change 
in the flux linkage) Electromotive force

Perpetuum

68 mm x 63 mm

P < 20mW 

Enocean

29 x 19 x 7 mm3

200µJ@2V
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Mechanical EH : Electromagnetic conversion

K. Paul et al., J. Appl. Energy 2021

 Current trends:

 Increase input bandwidth - Exploiting non-linearities (springs)
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Mechanical EH : Most active universities / RTO

NU Singapore, SGP

U Tokyo
Kobe U
Gunma U
Kanazawa U
CRIEPI 
U Tohoku, JPN

Imperial College, BGR

Warsaw U
CEZAMAT, POL

Fraunhofer-ISIT, GER

U Michigan
Georgia Tech
MIT
U Utah, USA

Tyndall
U. College Cork, IRL

USN-Norway, NOR

Beijing IT
BINN, CHN

U Yonsei, KORFEMTO-ST
U Paris-Est
U Grenoble Alpes
U Annecy, FRA

13 of 70



ESSDERC/ESSCIRC 2023 Workshop
European Strengths and Gaps in Emerging Semiconductor Technologies

Thermal EH

 Fast thermalization (need for a big heat sink)

 Non-flexible

 Bi2Te3 : Expensive/rare/toxic material/incompatible with 
CMOS

 Power proportional to available temperature gradient

• Principle

Seebeck effect: generation of a voltage along a conductor when it 
is subjected to a temperature difference.

Main parameter : zT=σS²T/κ. σ : electrical conductivity (1/Ω/m), 
S : Seebeck coefficient (V/K), κ : thermal conductivity (W/m/K), 
T : temperature (K). 

zT ~ 1 (now)               3 (future) Micropelt

~4 x 3 X 1 mm

P < 15mW 

@ ΔT=30K

Nextreme

~ 11 x 10 x 1 mm

P < 130mW

@ ΔT=50K
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Thermal EH

 Current trends:

 Enhancement of the coupling to environmental heat source at system level.

 Dynamic thermoelectric energy harvesting (heat storage)

M. Kiziroglou et al., IEEE Trans. Indus. Elec. 2014

64 × 38 × 40 mm (141 g)
60 × 30 × 30 mm aluminum HSU

zT = 0.72, 126J, 1.62 J/cm3

M. Kiziroglou et al., IEEE Trans. Indus. Elec. 2017
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Thermal EH: Most active universities / RTO

U Sherbrook, CAN

Tyndall, IRL

IEMN, FRA

NIMS
Waseda U
AIST
Osaka Met. U
Nagoya U
Kyushu U
Kyoto Inst. Tech.
U Tsukuba
U Tokyo, JPN

Imperial College
U. Southampton, BGR Warsaw U

CEZAMAT, POL

U. Freiburg
IFW Dresden, GER

JNCASR, IND
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Photovoltaic EH

 A market dominated by the Si (mature 
technology):

◼ For outdoor applications, crystalline Si solar cells

◼ For indoor applications, amorphous Si photovoltaic 
cells

 Solar cells spectral sensitivity and efficiency differ 
depending on the light spectrum which is very 
different for artificial and sun light

Principle : Photovoltaic effect:
- Absorption of light by the semiconductor - Electron-hole pair generation,
- separation and collection Power delivered

Courtesy of A. Kaminski, NEREID, 2016 .
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a-Si, organic, DSSC (dye 
sensitized solar cells), 
semiconductors compounds 
(III-V, CdTe,…), Perovskite

Si, tandem cells on Si, 
semiconductors
compounds (CIGS…)
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Photovoltaic EH: current trends

• Still work to be done before reachning large scale: reduce losses, increase lifetime…
• Low resistivity transparent electrodes (Nanowires, nanotubes, thin metallic films)

transparency
efficiency

C. J. Traverse et al., Nature energy, 2017 .

 Develop high efficiency and low cost transparent PV (flexible, even better)

 PV covering other things other than roofs (e.g. windows, walls, e-devices …)

 Not all application need to be 100% transparent or highly efficient 
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Photovoltaic EH: Most active universities / RTO

U Sherbrook, CAN IMEC, BEL

IPVF
Grenoble INP
CEA INES, FRA

IUNET
U. Modena, ITA

NREL, USA

U New South W
Australian N U, AUS

Kyoto U
Hiroshima U
RATO, JPN

TNO, NED
Fraunhofer ISE
HZB, GER

U Liverpool, SUI

U Liverpool, BGR
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RF EH /Wireless power transfer

 Far field : Used for low/ultra low power (~µW-mW) 

◼ Applications (harvesting)

◼ Low efficiency

◼ No commercial applications

 Near Field : medium to high power app. (~mW-W-kW). 

◼ Medium to high efficiency

◼ Commercial applications

2 Principles :
- Radiated far field RF source (High frequency 300MHz-GHz)
-> Antennas (no interaction) 

Near EM field – Capacitive or inductive coupling
(low frequency 30kHz-MHz)
->coils, electrodes (strong interaction)
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 EH at mm – wave : how to reach high gains + wide angular coverage (RF to DC)

 Typically Low power transmitted (regulations)             5G (higher power)! > 24GHz

RF EH/wireless power transfer: current trends

Beamforming networks (BFNs)
Rotman lens

A. Eid et al., IEEE/MMT Symposium, 2019

• It channels energy coming from any direction to one of the rectifiers.
• The DC outputs of the rectifiers are serially combined             power to the load
• Stable output regardless of the sources location (RF source location is unknown)
• Increase in power (same angular coverage w/o BF)
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Rectifing circuits

10µW

0.1µW

21 of 70



ESSDERC/ESSCIRC 2023 Workshop
European Strengths and Gaps in Emerging Semiconductor Technologies

RF EH/wireless power transfer : Most active 
universities / RTO 

Ecole Polytechnique, CAN Tyndall, IRL

U Bordeaux
Grenoble INP
U Grenoble Alpes, FRA

IUNET
U. Bologna, ITA

U Florida
U Utah, USA
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Energy storage: Micro-batteries

 Lithium based thin films: ~1 mWh/cm2, capacity retention -> 1000 cycles

 Electrode thickness limit < ~µm

 Ionic conductivity of solid elecrolyte << liquid based (commercial)

 Thin film solid-state solutions for energy storage have existed for some years now but 
more energy density and higher power options at lower cost are required

10µm

Principle :
- Electrolyte : high ion conductivity, low electronic

conductivity
- Replacement of the classical
liquide electrolyte thin film

- Si integrated
- Size reduction, safer
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Energy storage: Micro-batteries – current trends

 Increase of performances : new materials for electrodes (quality), electrolyte

 Electrodes protective layers:  Lithium cobalt oxide / Al2O3 , Si / C

A. Reyes Jiménez et al., ACS Nano, 2017

• Increased electronic conductivity, 
mechanical stability

• Increased capacity retention
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Energy storage: Micro-batteries - Most active 
universities / RTO

UC Berkeley, USA

Tyndall
U. College Cork, IRL

U. Tsinghua, CHN

25 of 70



ESSDERC/ESSCIRC 2023 Workshop
European Strengths and Gaps in Emerging Semiconductor Technologies

Micro-power management

 It must be able to handle very low levels of ambient energies (1 µW).

 It must also be able to operate with near-0 voltages.

 Major silicon foundries have proposed in recent years dedicated products 
operating down to few µW and few hundreds mV, along with very tiny 
implementations requiring few components

• Essential to store and deliver the harvested

energy to circuits

• Must consume less than the input power

• Efficiency must be traded with
self-consumption

• Should keep sources in the MPP
A. Romani et al., Computer, 2017
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Micro-power management: current trends

 Size reduction, increase efficiency, multiple harvesters...

 Multiple EH + Batteries, multiple out-puts

 Single inductor (DC-DC)           size reduction

 One stage reduce losses

• 28-nm FDSOI
• Die area 0.5 mm2

• Output power 1µW - 60mW 
(efficiency >75%), Vout 1V

• Minimum input power 262nW

S. S. Amin et al., IEEE JSSC, 2018
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Micro-power management : Most active 
universities / RTO

Imperial College, BGRTyndall, IRL
Fraunhofer-IIS, GER

IUNET
U. Bologna, ITA
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Conclusions and perspectives

 The improvement of the EH performance/efficiency is as important as the 
development of “green” materials. Replacing toxic/rare materials used nowadays 
(lead based piezoelectrics, Bi2Te3 for thermoelectrics, NdFeB - neodymium, for 
electromagnetic conversion).

 The use of nanotechnologies is foreseen to increase the performance of all the 
concepts in general.

 Flexible and low cost approaches for wearable applications (i.e. e-health) should be 
developed as well.

 The comprehensive system design combining all aspects of the fabrication process, 
harvester structure, power conversion circuits and storage will be the potential 
solution for increasing the power generation efficiency.
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Thank you for your attention !
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