

ESSCIRC/ESSDERC 2023 SiNANO-ICOS Workshop "European Strengths and Gaps in Emerging Semiconductor Technologies"

Energy Harvesting: review of the main EU and international activities and technologies

Gustavo Ardila IMEP-LaHC Grenoble Alpes University, France gustavo-adolfo.ardila-rodriguez@grenoble-inp.fr

Lisbon, September 11, 2023

Outline

Introduction

- Energy harvesting technologies (IEEE-IRDS)
 - Main technologies, trends, challenges, examples
 - Most active universities / RTO
- Conclusions and perspectives

INTRODUCTION

Introduction

- Market growth on connected devices : IoT (estimated 40 billion devices by 2025), healthcare, wearables, home automation...
- \Box Energy supply is essential (<mW, tens of μ W) \longrightarrow Energy Harvesting
- EH is important in applications with specific requirements : simple battery is not enough, cords would increase the cost / complexity, too many devices, harsh environment, implants...

Introduction: Technologies covered so far...

European Strengths and Gaps in Emerging Semiconductor Technologies

Energy harvesting technologies

- Harvesting principle based on mechanical resonators
- Applications are linked to mechanical vibrations harvesting (movements)

• Principle

Resonant cantilever covered by a piezoelectric layer and a inertial mass attached. As the cantilever is bent, strain is transferred to the piezo layer — asymmetric charge distribution (Voltage) MIDE (PZT)

- Devices tuned at a specific vibration frequency
- Devices are easy to fabricate
- Macro-devices and MEMS are actually on the market
- □ Most used materials (commercial) : PZT (lead/toxic), PVDF

TE Connectivity

(PVDF)

Mechanical EH : Piezoelectric conversion

- Current trends:
- □ Increase input bandwidth / reduce working frequency for portable applications
- □ Frequency-up converter (rotating systems)

Mechanical EH : Electrostatic conversion

Principle

One electrode of the capacitor is charged (electret, triboelectricity...) and the relative movement between the two electrodes causes a variation of electric capacity \longrightarrow charges movement

- Energy density is low at macro level but increases at micro scale (relative capacitor variation increases)
- □ Main challenge is related to the reliability of the material to keep the charges

Mechanical EH : Electrostatic conversion

- Current trends:
- □ MEMS device Increase input bandwidth
- □ impact frequency up converter (stoppers & balls)

• Principle: Faraday's Law

Relative motion – magnetic field & coil (or change in the flux linkage) — Electromotive force

- Macro-devices are vastly developed and are on the market
- MEMS devices less explored due to drastic drop in performance
- □ Use of rare earth-based magnetic NdFeB

Perpetuum 68 mm x 63 mm P < 20mW

Enocean 29 x 19 x 7 mm³ 200µJ@2V

- Current trends:
- Increase input bandwidth Exploiting non-linearities (springs)

Thermal EH

• Principle

<u>Seebeck effect</u>: generation of a voltage along a conductor when it is subjected to a temperature difference.

Main parameter : $zT=\sigma S^2T/\kappa$. σ : electrical conductivity (1/ Ω /m), S : Seebeck coefficient (V/K), κ : thermal conductivity (W/m/K), T : temperature (K).

 $zT \sim 1 (now) \longrightarrow 3 (future)$

- □ Fast thermalization (need for a big heat sink)
- □ Non-flexible
- Bi₂Te₃ : Expensive/rare/toxic material/incompatible with CMOS
- Power proportional to available temperature gradient

Micropelt ~4 x 3 X 1 mm P < 15mW @ ΔT=30K

Nextreme ~ 11 x 10 x 1 mm P < 130mW @ ΔT=50K

ESSDERC/ESSCIRC 2023 Workshop European Strengths and Gaps in Emerging Semiconductor Technologies 14 of 70

Thermal EH

- □ Current trends:
- □ Enhancement of the coupling to environmental heat source at system level.
- Dynamic thermoelectric energy harvesting (heat storage)

Thermal EH: Most active universities / RTO

ESSDERC/ESSCIRC 2023 Workshop European Strengths and Gaps in Emerging Semiconductor Technologies

Photovoltaic EH

Principle : Photovoltaic effect:

- Absorption of light by the semiconductor Electron-hole pair generation,
- separation and collection \longrightarrow Power delivered

a-Si, organic, DSSC (dye sensitized solar cells), semiconductors compounds (III-V, CdTe,...), Perovskite

Si, tandem cells on Si, semiconductors compounds (CIGS...)

Courtesy of A. Kaminski, NEREID, 2016.

17 of 70

- A market dominated by the Si (mature technology):
 - For outdoor applications, crystalline Si solar cells
 - For indoor applications, amorphous Si photovoltaic cells
- Solar cells spectral sensitivity and efficiency differ depending on the light spectrum which is very different for artificial and sun light

Photovoltaic EH: current trends

- Develop high efficiency and low cost transparent PV (flexible, even better)
- PV covering other things other than roofs (e.g. windows, walls, e-devices ...)
- □ Not all application need to be 100% transparent or highly efficient

- Still work to be done before reachning large scale: reduce losses, increase lifetime...
- Low resistivity transparent electrodes (Nanowires, nanotubes, thin metallic films)
 C. J. Traverse et al., Nature energy, 2017

SCSE ELECTRON EVICES SOCIETY IN ICON SINAN Institute European Institute

Photovoltaic EH: Most active universities / RTO

European Strengths and Gaps in Emerging Semiconductor Technologies

RF EH /Wireless power transfer

2 Principles :

- Radiated far field RF source (High frequency 300MHz-GHz)
- -> Antennas (no interaction)
- Near EM field Capacitive or inductive coupling (low frequency 30kHz-MHz) ->coils, electrodes (strong interaction)
- □ Far field : Used for low/ultra low power (~µW-mW)
 - Applications (harvesting)
 - Low efficiency
 - No commercial applications
- □ Near Field : medium to high power app. (\sim mW-W-kW).
 - Medium to high efficiency
 - Commercial applications

RF EH/wireless power transfer: current trends

- \Box EH at mm wave : how to reach high gains + wide angular coverage (RF to DC)
- □ Typically Low power transmitted (regulations) \longrightarrow 5G (higher power)! > 24GHz

Beamforming networks (BFNs) Rotman lens

- It channels energy coming from any direction to one of the rectifiers.
- Stable output regardless of the sources location (RF source location is unknown)
- Increase in power (same angular coverage w/o BF)

A. Eid et al., IEEE/MMT Symposium, 2019

RF EH/wireless power transfer : Most active universities / RTO

Energy storage: Micro-batteries

Principle :

- Electrolyte : high ion conductivity, low electronic

10μm conductivity

- Replacement of the classical
- liquide electrolyte \longrightarrow thin film
- Si integrated
- Size reduction, safer
- □ Lithium based thin films: \sim 1 mWh/cm², capacity retention -> 1000 cycles
- □ Electrode thickness limit < \sim µm
- □ Ionic conductivity of solid elecrolyte << liquid based (commercial)
- Thin film solid-state solutions for energy storage have existed for some years now but more energy density and higher power options at lower cost are required

Energy storage: Micro-batteries – current trends

Increase of performances : new materials for electrodes (quality), electrolyte
 Electrodes protective layers: Lithium cobalt oxide / Al₂O₃, Si / C

Energy storage: Micro-batteries - Most active universities / RTO

ESSDERC/ESSCIRC 2023 Workshop European Strengths and Gaps in Emerging Semiconductor Technologies

Micro-power management

A. Romani et al., Computer, 2017

- Essential to store and deliver the harvested energy to circuits
- Must consume less than the input power
- Efficiency must be traded with self-consumption
- Should keep sources in the MPP
- \Box It must be able to handle very low levels of ambient energies (1 μ W).
- □ It must also be able to operate with near-0 voltages.
- □ Major silicon foundries have proposed in recent years dedicated products operating down to few µW and few hundreds mV, along with very tiny implementations requiring few components

Micro-power management: current trends

- □ Size reduction, increase efficiency, multiple harvesters...
- □ Multiple EH + Batteries, multiple out-puts
- □ Single inductor (DC-DC) → size reduction
- $\Box \quad \text{One stage} \longrightarrow \text{reduce losses}$

- 28-nm FDSOI
- Die area 0.5 mm²
- Output power 1µW 60mW (efficiency >75%), Vout 1V
- Minimum input power 262nW

S. S. Amin et al., IEEE JSSC, 2018

ESSDERC/ESSCIRC 2023 Workshop European Strengths and Gaps in Emerging Semiconductor Technologies

Micro-power management : Most active universities / RTO

ESSDERC/ESSCIRC 2023 Workshop European Strengths and Gaps in Emerging Semiconductor Technologies

- The improvement of the EH performance/efficiency is as important as the development of "green" materials. Replacing toxic/rare materials used nowadays (lead based piezoelectrics, Bi₂Te₃ for thermoelectrics, NdFeB neodymium, for electromagnetic conversion).
- □ The use of nanotechnologies is foreseen to increase the performance of all the concepts in general.
- Flexible and low cost approaches for wearable applications (i.e. e-health) should be developed as well.
- The comprehensive system design combining all aspects of the fabrication process, harvester structure, power conversion circuits and storage will be the potential solution for increasing the power generation efficiency.

Acknowledgments

International Roadmap for Devices and Systems MORE THAN MOORE WHITE PAPER

- **Gustavo Ardila**, Grenoble Alpes Univ./Grenoble INP (Team leader)
- Aldo Romani, IUNET/Univ. of Bologna (co-leader)
- **Hiro Akinaga**, National Institute of Advanced Industrial Science and Technology (AIST)
- Philippe Basset, Univ. Gustave Eiffel
- **Alessandro Bertacchini**, IUNET/Univ. of Modena and Reggio Emilia
- Alessandra Costanzo, Univ. of Bologna
- Mike Hayes, Tyndall
- Maciej Haras, Warsaw Univ. of Technology
- Anne Kaminski, Grenoble INP

Energy Harvesting team

- Michail Kiziroglou, Imperial College London
- Ivona Mitrovic, Univ. of Liverpool
- Yoshiyuki Nonogushi, Kyoto Institute of Technology
- Alessandro Piovaccari, Univ. of Bologna
- Kafil M Razeeb, Tyndall
- James Rohan, Tyndall
- Saibal Roy, Tyndall
- Thomas Skotnicki, Warsaw Univ. of Technology
- Hiroshi Toshiyoshi, Univ. of Tokyo
- Eric Yeatman, Imperial College London

Thank you for your attention !

