

Sensors for Sustainable AgriFood & the Environment

Dr. Alan O'Riordan Senior Research Fellow PI, VistaMilk SFI Centre

Why AgriFoods? Societal Impact

Motivation: Food Production +70% by 2050

The Nitrates Directive

Water Framework Directive The way towards healthy waters

Climate Change

Competition for land

Loss of Biodiversity

Global Agriculture Analytics Market

Reach

"One of the Key Drivers for market growth is the rising need for accurate crop forecasting and yields."

EU – Green Deal

- Monitoring is a costly and timely process
- High cost of ownership / experts required

2022. Patent Pending

SAFE Cluster Overview

Communications Ashtrare Sustainable Agri-Foods & the Environment AgriFoods thing Agriculture FREIEL SAFE

ICT for Sustainable Agri-Food-Environment Applications-Focused Research Cluster

Vision

SAFE Cluster

Establish Tyndall as the global deeptech research institute of choice for development of bio/chemical sensors and systems in Agriculture, Food and the Environment.

Mission Statement

To provide real-time informed decision making capacity to users in animal & plant health; soil; water, air quality.

SAFE Coordinator: Dr Alan O'Riordan Programme Manager: Dr Gerry Mouzakitis

SAFE Strategic Research Cluster

SAFE Cluster Strategy

- 1. Emerging era of Digitalisation in SAFE
- 2. Research beyond state-of-the-art ICT solutions
- 3. Identify real world pain points.
- 4. Collaborate with Agri-Food-Envt experts.

A Leap in value in Agri-Food-Environmental monitoring through beyond state-of-the-art ICT

BLUE OCEAN STRATEGY

How to Create Uncontested Market Space and Make the Competition Irrelevant

W. Chan Kim • Renée Mauborgne

Approximating Blue Ocean Strategy				
Characteristics	SAFE Strategy			
<i>Basic Concept</i> align innovation with cost to create a leap in value reate unexplored new market areas	 SAFE Interpretation Utilise beyond state-of-the-art tech Align outputs to stakeholder needs and cost Create novel, useful solutions 			
Differentiation through low cost solutions	 Point-of-use monitoring No reagents Tyndall prototypes 			
Alignment with real needs of customers (stakeholders)	 Collaboration with international experts Real-time monitoring; Not lab-based Simple: performed by line staff Data integrity, validation 			
Create uncontested market space	 Novel sensors & systems Lab-based → Point of use 			
Exemplars	 Novel Sensor & Systems Technology Real-time nutrient soil monitoring Water Quality In-Field disease diagnostics 			

Research Focus

- Developing new advanced nanosensing platforms to digitalize the agri-food sector to enhance food security, reduce losses, increase sustainable production & economic return while also protecting biodiversity.
- Digital technologies will transform the traditional based agriculture industry to a knowledge based one.

Samples

Milk

Blood

Saliva

Beverages

Water

Soil

Gases

Electrochemistry

Bio-

electrochemistry

Surface-Enhanced

Raman Scattering

Collector Electrodes

Laser

Glucose

molecules

Raman

scattering

Surface modified substrate

Detector Computer

Excited glucose

molecules

Raman shi

Nanosensor Platform

✓ Goal: Develop Sensors & Systems in line with "Do No Significant Harm" principle

- (Soil) Nutrients
- Electrolytes
- Heavy metals

- Biomarkers
- DNA

٠

- Food Adulterants
- Flavourings, sweeteners
- Antibiotics
- Pesticides

Electrochemical Nanosensor - Advantages

- ✓ On a similar size scale to analyte molecules of interest
- Demonstrate enhanced sensitivity arising from enhanced analyte mass transport
- ✓ Significantly reduced signal noise (background noise)
- ✓ Can be fabricated at high density (nm separation)
- ✓ Multiplexed detection
- ✓ Enable direct electrical signal readout
- ✓ Very low analyte concentrations
- ✓ Rapid Sensing

Key Challenges

- Reference electrode drift
- Specificity requires modification
- Need to add chemical reagents

Stabilized Reference Electrode

Gold Oxide Reduction as pH Probe

- A gold IDE was used with a 1 μm width electrode and a 2 μm gap
- The electrode was scanned to 1.3 V to generate an oxide, which was subsequently reduced

Nanoelectrodes – No reagent addition

Simulation of proton diffusion of protons from protonator electrode:

Visualisation of pH change using crystal violet pH indicator dye.

Oxidation: $2 H_2O(I) \rightarrow O_2(g) + 4 H^+(aq) + 4e^-$ Reduction: $2 H^+(aq) + 2e^- \rightarrow H_2(g)$

Electrochemical In-situ pH control

Nitrate: Real-Time, On-Farm

With pH control

-115

advant provident provident provident

545 635 636

13.8

-1114-

-1.0-4 -

192.0

-14 (4) (3) 439 430 435 430 475 535 548

Local pH control

Preparation of field deployment

Gather historical map data

Validate flight infrastructure by :

Performing flight tests with custom made quadcopter

Integrate several cameras (ortho-photo, thermal and spectral – Micasense RedEdge MX) for best results

Preparation of field deployment

Validate collection and post process spectral data by:

- Using different flight scenarios
- Output data collected in a single format using software such as Pix4D and OpenDroneMap
- Post process spectral image (Tiff format) using QGis software for generating various spectral index maps (ENDVI, LAI, NDRE, NDVI)
- Compare output with SANTINEL satellite gather data

Sensor data validation and interpretation

Validation infrastructure setup

Continues spectral data collection from both satellite sources and drone mounted RedEdge Mx spectral camera

Data	Activitate/Fenofaza	Flight altitude (m)	Amount of data collected (GB)	Post-processing Tool	
01-May	spectral imagery and ortho	50 14.30		DroneMap, Pix4D, Agisoft	
15-May	spectral imagery and ortho	75	18.20	DroneMap, Pix4D, Agisoft	
19-May	spectral imagery and ortho	50	26.90	Pix4D, Agisoft	
09-Jun	spectral imagery and ortho	100	8.40	Agisoft, QGIS	
16-Jun	ortho	100	2.82	Agisoft, QGIS	
18-Jun	spectral imagery and ortho	100	11.10	Agisoft, QGIS	
23-Jun	spectral imagery and ortho	100	10.50	Agisoft, QGIS	
29-Jun	spectral imagery and ortho	100	10.00	Agisoft, QGIS	
15-Jul	spectral imagery and ortho	100	11.60	Agisoft, QGIS	
28-Jul	spectral imagery and ortho	100	7.70	Agisoft, QGIS	
02-Aug	spectral imagery and ortho	100	8.06	Agisoft, QGIS	
05-Aug	spectral imagery and ortho	100	15.60	Agisoft, QGIS	
13-Aug	spectral imagery and ortho	100	8.56	Agisoft, QGIS	
21-Aug	spectral imagery and ortho	100	8.18	Agisoft, QGIS	
31-Aug	spectral imagery and ortho	100	8.30	Agisoft, QGIS	
01-Oct	spectral imagery and ortho	100	8.06	Agisoft, QGIS	
24-Oct	spectral imagery and ortho	100	8.23	Agisoft, QGIS	

ENDVI spectral output 19.05.2022

NDVI spectral output 21.06.2022

Tabel 1: Spectral imagery collection history

Sensor in field installation and maintenance

Reference soil sample collection

Aprox. every 10 days during crop life cycle, soil sample collection was performed from 5 different points of the field and classic lab analysis were performed

Results were inserted into Sarmenti Webpage, together with corn life cycle stages

In field reference points distribution

Back end server

Sensor Fusion

Validation infrastructure setup

In vegetation fertilization decision based on nitrogen sensor readings and soil samples collection with urea prill on 22.06.2022, using variable spread rate

NDVI index map (1sqm/pixel resolution) (21.06.2022)

Detail of NDVI index value (0.887), corresponding to location where SARMENTI system was installed, collected on 21.06.2022 with Micasense RedEdge Mx spectral camera

Sensor informed fertilisation strategy

Operationalize of Vicon RO-M Geospread 2008 fertilization machine GPS driven (20.05.2022), for applying in season granulate fertilizers such as urea with variable spread rate.

Urea spreading in-season with John Deere 6800 tractor and Vicon Geospread RO-M fertilizer machine driven and controlled with Trimble CFX GPS system

Achievements

Sarmenti system and its web application:

- All data produced by the Sarmenti project
- Can support the farmer with data presentation and decision making
- Allows viewing real-time evolution of field conditions
- Enables farmers to correlate weather events with nutrients evolution and plant response

From Spiro point of view:

- Agronomical practice is improved by using Sarmenti built tools
- Economical efficiency has improved (500 kg of less urea over 21 Ha)
- Environmental hazards (Nitrate losses) are reduced

System was functional up until 23rd of January 2023 (6+ months), including a few very harsh winter days ☺

Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland. T12 R5CP

t: +353 21 490 4177 e: info@tyndall.ie tyndall.ie

Dr. Alan O'Riordan

alan.oriordan@Tyndall.ie

in @tyndall-national-institute
 @TyndallInstitut
 @tyndall_institute
 @TyndallInstitute

Reference soil sample collection

Reference soil sample collection

A total of 96 soil samples were collected between seeding and harvesting (20 different dates for 5 different points) and 5 new ones collected exclusively for P3 (SARMENTI system reference point) after harvest, during November and beginning of December

Example of lab analysis result evolution for total amount of Nitrogen content

Example of analyse report for soil sample P3 collected on 27.07.2022

Institiúid Náisiú

Soil Health

Water Health

Residual Chlorine: pH Control

2020. Sensors and Actuators B: Chemical, DOI: 10.1016/j.snb.2020.128774

Monochloramine: Eliminate O₂

Interferences

2021. ACS Sensors, DOI: 10.1021/acssensors.0c02264

Water Health

vndall

Institiúid Náisiúnt

Silver: pH Control

2021. Sensors and Actuators B: Chemical, DOI: .1016/j.snb.2021.129531

vndall

Institiúid Náisiúnta

Copper: In-situ pH control

Sites	ICP-MS (µg/L)	Pt IDA Sensor (μg/L)
Avoca	22	17
Ross Mines	27	20
Bunmahon	<3	1

2021. Sensors, DOI: 10.3390/s21103544

Nanosensor Platform

Soil Health

Water Health

Multiple metals: In-situ pH control

2023. Electrochimica Acta, DOI: 10.1016/j.electacta.2022.141668

2023. Manuscript in preparation.

DNA-based E. coli

Soil Health

Water Health

Animal/Plant Health

Future Directions

Tyndall National Institute

2023. Electrochimica Acta, DOI: 10. 1016/j.electacta.2023.141814

Nanosensor Platform

Water Health

Animal/Plant Health

Future Direction

Virus: Real-Time, In-Field

Minimum Viable Product

- Zim / MΩ

Water Health

Animal/Plant Health

Future Direction

Virus: Benchmarking

SA	SAMPLE ELISA (Absorbance)		PCR		Impedance (MΩ)			
ID	Variety	PVY	PVS	PVA	PVY	Ct RT-PCR	rRct (MΩ)	PVY Presence
155A	T8247/04	0,326 (P)	0,231(P)	0,2 (N)	Р	14,515	32	LP
155B	T8247/04	0,114 (N)	1,72 (P)	0,189 (N)	Ν	29,505	27	Ν
156A	T8304/08	1,232 (P)	0,125 (N)	0,154 (N)	Р	14,875	70	MP
156B	T8304/08	0,114 (N)	1,817 (P)	0,303 (P)	Ν	30,715	23	Ν
157A	T8310/03	1,897 (P)	0,191 (N)	0,144 (N)	Р	14,755	100	MHP
160A	T8472/05	0,102 (N)	0,141 (N)	0,415 (P)	Ν	29,42	25	Ν
161B	T8486/02	2,538 (P)	0,108 (N)	0,2 (N)	Р	14,505	250	HP
161A	T8486/02	0,232 (P)	0,19 (N)	0,208 (N)	Р	15,63	35	LP
164A	T8560/07	0,977 (P)	0,111 (N)	0,166 (N)	Р	14,995	57	MLP
165A	T8561/01	1,593 (P)	0,262 (P)	0,312 (P)	Р	13,895	77	MP
166A	T8597/02	0,101 (N)	0,146 (N)	0,133 (N)	Ν	30,95	20	Ν

Abbreviations: P (Positive), N (Negative); LP (Low Positive), MLP (Medium-low Positive); MP (Medium positive), MHP (Medium-High Positive); HP (High Positive); PVY (Potyvirus Y) PVS (Potyvirus S); PVA (Potyvirus A) Ct-PCR (cycle threshold PCR), Rct (Charge transfer resistance)

2023. Manuscript in Preparation.

Nano-IDE Generator: Collector 2.0

Non-GC Mode

Work in progress.

Micro-Fluidics

4.8

4.6

4.4

4.2

3.8

3.6

3.4

3.2

Tyndall National Institute Institiúid Náisiúnta

Simulation of effect of flow non CG

100 uL/min concentration profile

Assembled Microfluidics

Food dye to show channel outline

5.3ppm Chlorine detection in buffer with localised pH control

Work in progress.

System Integration

2021. IEEE Sensors, DOI: 10.1109/JSEN.2020.3021941

Summary

Eliminate need for of addition of reagents:

Nanosensor design to locally control the chemistry of the solution at the sensor, e.g. pH control and minimising interferents by other species

Stabilising On-chip reference electrodes:

developing deposition methods for polymer coatings to maintain chemical stability

Electrochemistry that identifies chemical species:

developing tailored surface chemistries **Portable system for field measurements/ decision support systems (DSS):** Integrated sensor/electronics system for in-field measurement trials

Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland. T12 R5CP

t: +353 21 490 4177 e: info@tyndall.ie tyndall.ie

Dr. Alan O'Riordan

alan.oriordan@Tyndall.ie

in @tyndall-national-institute
 @TyndallInstitut
 @tyndall_institute
 @TyndallInstitute

2D v 3D simulations

2022. Electrochimica Acta, DOI: 10.1016/j.electacta.2022.139890

Generator-Collector Devices

Overlapping diffusion layers – Planar diffusion

2018. Electrochimica Acta, DOI: 10.1016/j.electacta.2018.04.181

Nanowire Arrays – Electrode Pitch

Three nanowires: 100 nm width x 50 nm height separated by *d* > effect of altering inter-electrode distance using cyclic voltammetry
 > *d* = 5 to 15 μm

 \bullet Simulated concentration profile of 1 mM FcCOOH in 10 mM PBS at the electrode surface:

$$C_{R}(\mathbf{t}) = \frac{C_{R}^{*}}{1 + exp\left[\frac{nF}{RT}\left(E^{0} - E(t)\right)\right]}$$

depends on the applied potential

depends on the potential scan rate

➤ target high scan rate (5000 mV.s⁻¹) since it allows rapid data capture