

Corporate & tech *April. 2023*

Scale Big Data & APU

UPME

DATA

Boost Big Data & Al 20x, being 10x more energy & cost efficient, with **Processing In Memory (PIM)**

Corporate introduction

Leader & Pioneer in Processing In-Memory (PIM) on DRAM

त्रु दुर्दु	INNOVATION	 The award-winning leader in revolutionary data-centric computing Pioneering Processing-In-Memory (PIM) solving CPU-Memory bottleneck
副	ІМРАСТ	20x faster processing UPMEM PIM-DRAM wafer 10x less energy consumption, 10x lower TCO PIM Chip Marginal additional hardware & implementation cost Control/status Interface 20% reduction in datacenter energy & hardware footprint Control/status Interface
	BUSINESS MODEL	 Fabless semiconductor, with strong foundry partnership Server vendors will assemble and ensure distribution towards data centers
Ō	APPLICATIONS	 Big Data (analytics, genomics) & AI: ~50% of data center applications PIM to later target edge
Ø	CUSTOMERS	 Large Cloud Service Providers will buy and deploy UPMEM PIM accelerators Large data heavy application owners start creating market pull PIM Server
	Total Funding: \$17M	2022 POC revenues 2025E Revenue: \$30M+ Employee Count: ~23
	Founded: 2015	Total Patents: 11 Headquarters: Grenoble, France
		Supported by
3		Copyright UPMEM® 2023

mem

PROBLEM

CPU computing nodes cannot cope with data-intensive apps

Global datacenter energy consumption booming

- 2% of global electricity, growing fast
 - 40% of which is compute
- Datacenter capacity is a main bottleneck for cloud players

- ~80% of energy consumption in the computing node occurs moving data between the main memory & processor (DRAM and CPU)
- 63% of server system energy consumption

Current compute architectures have inherent data bottlenecks

- Data-intensive applications, becoming dominant, are memory bound
- Existing solutions don't meet market needs
 Big Data Analytics, genomics...
- Memory access is the main bottleneck, not compute

Data-related architectural bottlenecks are the main obstacle to improving computing performance

The Next Generation data center compute architecture

PIM inhibits movement of dana by performing calculations in memory

PIM bypasses structural bottlenecks inherent within existing server architecture

UPMEM PIM unique patented technology

• Leveraging existing industry processes, protocols, server architecture and memory slots, allowing smooth integration while maintaining familiar programmability

Standard compute node

PIM system

HIGHLIGHTS

- Up to 40 times faster
- Up to 10 times less energy at system level for the same compute power
- Up to 10 times lower TCO at system level
- Massive scalability

UPMEM ultra-efficient scalable PIM-DRAM accelerator solution

- Hardware acceleration of data analytics
- Massive local and global data bandwidth
- Predictable performance
- Offloads data analytics while freeing CPUs bottlenecks and charge
- Scalable system integration
- Hardware
- Software

UPMEM **PIM** units* (8 cores per UPMEM PIM-DRAM chip)

UPMEM **Processing In Memory (PIM)** accelerator modules

UPMEM Data Processing In Memory equipped standard server

^{*} A **PIM** unit is an app core (DPU) associated with its 64MB DRAM

Easily deployable with widely accessible programming effort on applications

UPMEM PIM: game changer for analytics & genomics

Targeting data-intensive compute-intensive apps

Data Analytics

Customer

Leading Telecom Equipment Provider

Use Case

Index Search of string text in big data sets

Customer Relevance

- Execution time is a top pain point with TBs of data to move and compute
- No appropriate server accelerator (GPU, FPGA)

Results

- <u>26x Increase</u> In Throughput
- <u>25x Decrease In Total Cost of Ownership</u>
- <u>15x Energy Efficient per Request</u>
- Accessible Programing
- Scalable Deployment

Speed-up vs Lucene*: x26 vs best CPU to x50 vs same CPU

Energy x15 better and TCO x25 better vs same CPU

* On Wikipedia index

UPMEM 1st **PIM-DRAM based MVP available & shipping** *Tech breakthroughs*

1st PIM-DRAM

Design & implement processor (DPU) into DRAM process

- with proprietary ISA

Silicon proven design

UPMEM PIM wafer

Fabbed with DRAM process Mass-production grade in DRAM foundry

DDR4 compatible

DDR4 memory protocol compliant Hacking DDR4 for control JEDEC SSO PIM standardization

UPMEM PIM chip

Standard DIMM for unchanged server hardware architecture

- developed internally

128 processors per DIMM, 8GB

System proven

UPMEM module with UPMEM PIM chips

System Integration

Allow PIM DRAM memory sharing (CPU & PIM-DPU) with appropriate server BIOS/Firmware settings

Thousands of PIM units, i.e. PIM DPUs per PIM server

UPMEM PIM qualified server

Running in operational conditions on x86 servers 24/7

Programmability

Allow programs to share tasks and data between CPU and PIM DPUs

UPMEM proprietary SDK

Allow familiar C, Rust programming of DPUs

Uses standard LLVM compilation toolchain

Benchmarks & use cases Hundreds of PIM developers

UPMEM ultra-efficient scalable PIM-DRAM accelerator solution

PIM Chip

Ultra Efficient PIM-DRAM Processor

- > Implemented on unchanged DRAM process
- > High & efficient data-bandwidth

>	Frequency	Up to 500 MHz
>	Register width	32-bit (64-bit support)
>	Bandwidth to DRAM	1 GB/s
>	DPUs per PIM Chip	8 DPU/PIM unit per chip
>	PIM Chip DRAM	8x64 MB = 4Gb
>	PIM Unit WRAM/IRAM	64 kB/24kB

DDR4 Compliant PIM Module

- > Readily inserted in the memory slots
- > DDR4 speed

 JEDEC Compliance 	Yes
Memory	DDR4-2400 8 GB
 PIM Chips per Module 	16
> DPUs per Module	128
 Operating tempelature 	0 to 95C

up

mem

DDR Server Integration

- > 160GB PIM-DRAM & 2560 DPUs @ 400MHz
- Bios Patching only

>	Chassis	E.g. INTEL Server System
>	CPUs	E.g. INTEL Xeon
>	Memory	4x32/64 GB DDR4 Dual Rank DRAM per socket
>	PIM Modules per Server	20
>	Memory Bandwidth	2.56 TB/s

UPMEM **PIM** accelerator module

BUSINESS MODEL

Selling & distributing UPMEM PIM

Cloud Services Provider AWS, MS Azure, Google Cloud...OVH... Own use or cloud services (search, analytics, DB...)

IP

Technology well protected & recognized by IT & SC community

Robust Patent Portfolio Granted & Published			
UPM2	Computer device provided with Processina-In-Memory and narrow		

- UPM3 Row hammer correction logic for DRAM with integrated processor
- **UPM4** Combined instruction for addition and checking of terminals
- **UPM5** Methods and devise for bypassing the internal cache of an advanced DRAM controller
- **UPM6** Die Stacking-Heat Sink for protecting a DRAM device from the row hammer effect
- **UPM7** Silver Bullet method and circuit for protecting a DRAM device from the row hammer effect

Unpublished

UPM 8 to 11

Award Winning & Well Referenced

- Selected as Top 100 emerging startups to follow in 2020
- Products are highlighted by mainstream chip community with increasing frequency
- Leading standardization for DDR-PIM with JEDEC

Impact

Reduce by 20% the datacenter energy & hardware footprint

Scale Big data & AI, enabling new critical digital services

AI

Genomics

Analytics, search, DB

Security

EIC Accelerator contribution

Copyright UPMEM® 2023

-

EIC contribution

Support UPMEM tech scale up with EIC Accelerator program

Scaling from POCs with MVP to deployable product with Cloud Service Providers (CSP)

Work packages of EIC Accelerator program EnergiaPIM

Tech

- Chip design and architecture
- Chip manufacturing
- Board and system design, manufacturing
- Productization and qualification
- Software developments
- Use cases
 - Genomics
 - Search
 - Analytics
 - Al
 - Analytics
 - LLMs

Pre-commercial activities

- Dissemination
- Engaging developer's community
 - Open-source
 - Academics
- Tech marketing

Takeaways from our journey with EIC

PROs

- Provide deep tech financial support hard to find in Europe to scale
- Dedicated and supporting teams
- Networking
- Visibility

CONs

- Bureaucratic long process and schedules
 - Hopefully solved

Thank you

Gilles HAMOU, CEO & co-founder ghamou@upmem.com