

WORKSHOP – Sustainable Electronics & International Cooperation On Semiconductors

Gate All Around Nanowire FETs: Operation From RT To Cryogenic Temperatures

Qing-Tai Zhao PGI 9, Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors

OUTLINE

Horizontal Si NW GAA FETs

Vertical Ge/GeSn NW GAA FETs

2

Electronics working at low T

Introduction-why GAA NW?

Power consumption

$$P_{tot} = AC_{tot}V_{DD}^2f + V_{DD}I_{off}$$

$$P_{stat} = V_{DD}I_{off} = V_{DD}I_{Vth}10^{\frac{-V_{th}}{SS}}$$

$$SS = \frac{kT}{q} \ln(10) \left(1 + \frac{C_d + C_{it}}{C_{ox}}\right)$$
$$C_d \approx \varepsilon_0 \varepsilon_{NW} \frac{\pi D^2}{4L}$$

 $C_{it} \approx e^2 D_{it} \pi DL$

NW diameter D decreases, SS is smaller!

Introduction: Band Tailing

$$SS_{\text{real}} = \frac{k_B T^{\star}}{e} \ln(10) \left(1 + \frac{C_{\text{it}}}{C_{\text{ox}}} + \frac{C_{\text{depl}}}{C_{\text{ox}}} \right)$$
$$\left[1 + \alpha \ln \left(1 + \exp \left(\frac{T - T^{\star}}{\alpha T^{\star}} \right) \right) \right],$$

G. Ghibaudo et al., SSE 170, 2020

Locallized states cause the depdendence of SS on Vg, the inflection phenomenon (states at the band edge).

J. Knoch, ... Q.T. Zhao, PSS(a), 2023

Si NW Ω-GATE FET

СН

Forschungszentrum

- Strained Si Nanowire
- Gate oxide: SiO2
- Source/drain: by ion implantation

Nanowire GAA FETs

Process and devices

Fully silicided source/drain Si NW FETs by implantation into silicide (IIS)

The diameter is 5 nm.

Cryogenic Characteristics

GAA Si NW FETs

- Suppressed band tail effects
 - Narrow transition region and steep SS at 5.5 K

SS of 2.3 mV/dec Average SS_{th} of 10.1 mV/dec

Cryogenic Characteristics: SS

GAA Si NW FETs

- No SS and SS_{th} saturation at Cryo-T
- Increased G_m as T decreases

Y. Han et al., to be published

Member of the Helmholtz Association

GeSn: from indirect to direct

Group IV- GeSn: high mobility

Vertical GeSn/Ge heterostructure NW FETs

GeSn/Ge Material Growth for p-FETs

- Epitaxial Ge_{0.92}Sn_{0.08} layer on Ge virtual substrate by CVD
 - Good Crystalline quality of strained Ge_{0.92}Sn_{0.08}
 - Defect-free interface

Pseudomorphic growth

WORKSHOP - Sustainable Electronics & International Cooperation On

Member of the Helmholtz Association

Semiconductors Qing-Tai Zhao,

Page 18

Ge/GeSn/Ge Growth for n-FETs

- Epitaxial Ge_{0.92}Sn_{0.05} layer on Ge virtual substrate by CVD
 - Good Crystalline quality of strained Ge_{0.92}Sn_{0.05}
 - Defect-free interface

Pseudomorphic growth

WORKSHOP - Sustainable Electronics & International Cooperation On

Member of the Helmholtz Association

Semiconductors Qing-Tai Zhao,

Page 18

Vertical GeSn NW CMOS

n-VFET:

- GeSn channel
- Ge S/D
- In situ doping

P-VFET:

•

Ge channel

GeSn top source

WORKSHOP - Sustainable Electronics & International Cooperation On

Semiconductors Qing-Tai Zhao,

GeSn/Ge p-VFETs

M. Liu et al., ACS Appl. Nano Materials 2021

Page 17

Member of the Helmholtz Association

Semiconductors Qing-Tai Zhao,

WORKSHOP - Sustainable Electronics & International Cooperation On

Vertical GeSn Nanowire nFETs

M. Liu et al, Communications Engineering 2023

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors

Member of the Helmholtz Association

Qing-Tai Zhao,

Vertical All-GeSn Nanowire nFETs

M. Liu et al, Communications Engineering 2023

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors

Qing-Tai Zhao,

JÜLICH Forschungszentrum

GeSn Cryogenic n-FETs

Qing-Tai Zhao,

SUMMARY

Si NW FETs

- 1. SS~ 60 mV/dec at 300K
- 2. Suppressed band tails effect by IIS
- 3. Lowest SS, SS_{th} , and high G_m

GeSn Vertical NW GAA FETs

- 1. Heterostructure design for n- and p-FETs
- 2. Higher hole and electron mobilities than Ge
- 3. Improved SS at cryo-T and inflection

ACKNOWLEDGEMENT

Yi. Han, Yannik Junk, Mingshan Liu, Jingxuan Sun, Dr. Dan Buca, Prof. Detlev Grützmacher

DFG-Project "Cryogenic-CMOS", BMBF-Project: "SiGeSn-NanoFET"

RWTH

- Prof. Joachim Knoch
- Benjamin Richstein

CEA-LETI:

• Jean-Michel Hartmann

Page 22

SOITEC:

- Frederic Allibert
- Ionut Radu

