

WORKSHOP – Sustainable Electronics & International Cooperation On Semiconductors

Augmented FDSOI platforms for improved sustainability

Roberto GONELLA

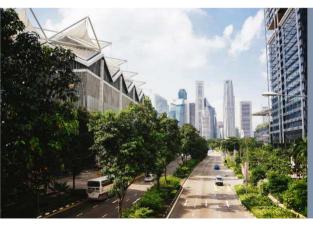
R&D Executive Director

STMicroelectronics

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Roberto GONELLA

life.auamente

We are creators and makers of technology


Where you find us

Making **driving** safer, greener, and more connected

Enabling the evolution of **industry** towards smarter, safer, and more efficient factories & workplaces

Making **homes & cities** smarter, for better living, higher security, and to get more from available resources

Making everyday **things** smarter, connected, and more aware of their surroundings

ICOS Differentiated technologies are our foundation

MEMS **Smart Power: BCD** for sensors & micro-actuators (Bipolar - CMOS - Power DMOS) **FD-SOI CMOS Discrete, Power MOSFET, IGBT FinFET** through Foundry Silicon Carbide, Gallium Nitride Analog & RF CMOS **Vertical Intelligent Power Optical sensing solutions eNVM CMOS** -**Packaging technologies** Leadframe – Laminate – Sensor module – wafer level

ICOS Differentiated technologies are our foundation

MEMS FD-SCI **Discrete, Power MOSFET, IGBT** Silicon Carbide, Gallium Nitride Analog & RF CMOS **Optical sensing solutions**

IC S Our strategy stems from key long-term enablers

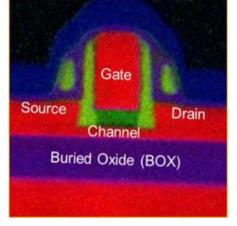
On Semiconductors

Helping car manufacturers make driving safer, greener, and more connected for everyone

Power & Energy

Enabling industries to increase energy efficiency everywhere and the use of renewable energy

Internet of Things & Connectivity

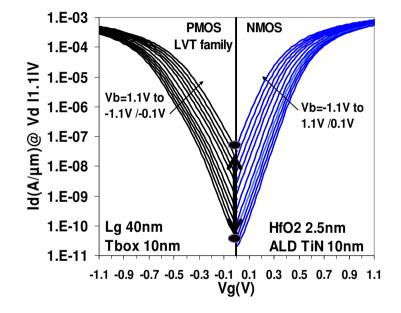


Supporting the proliferation of smart, connected IoT devices with products, solutions & ecosystems

What's FDSOI?

FDSOI is a cost-effective planar technology that relies on

- sub-threshold slope reduction
- DIBL lowering


-

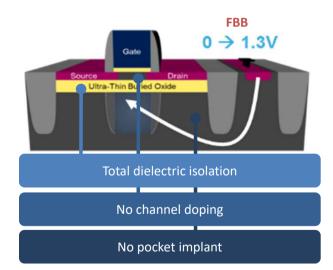
- FBB techniques

To boost performances especially at low and ultra low voltage

 The presence of the buried oxide allows the application of backbiasing voltages, resulting in breakthrough dynamic control of the transistor

FD-S- the body bias advantage

 Forward Body Biasing is a unique and effective knob available in FD-SOI for getting maximum leverage on the device operating range


Forward Body Biasing: An extremely powerful and flexible concept in FD-SOI

Performance boost

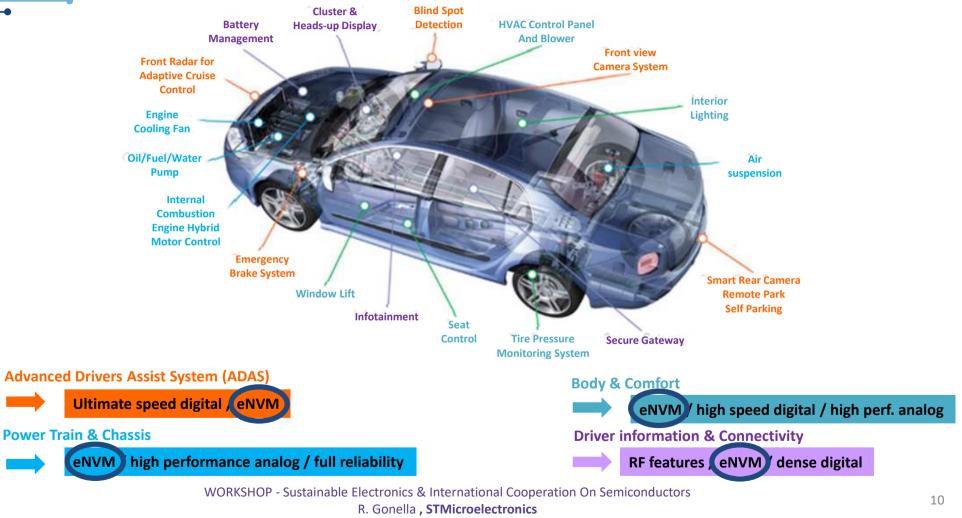
Reduce power consumption at a given performance requirement

Process compensation reducing the margins to be taken at design

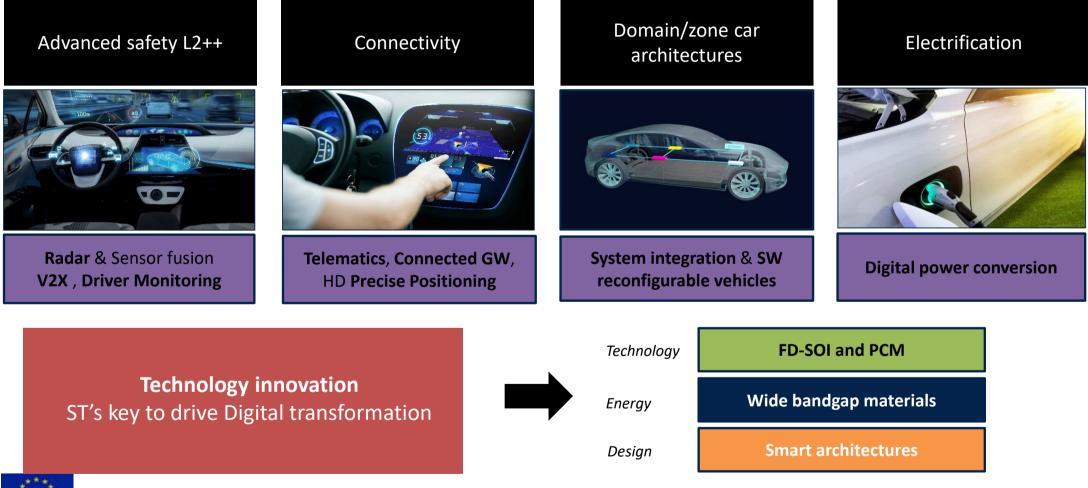
Seamless inclusion in the EDA flow

A very reasonable effort for extremely worthwhile benefits

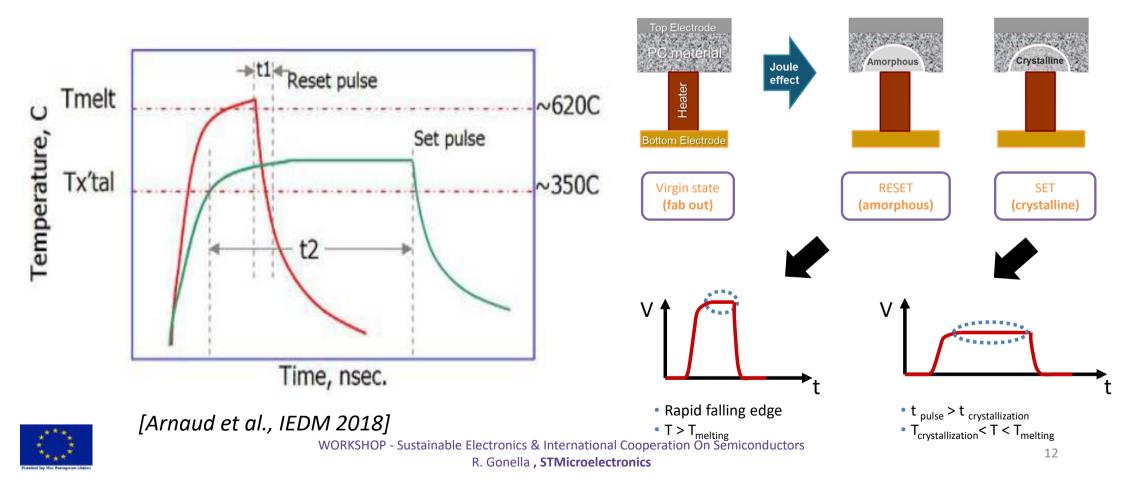
Smart Mobility – FDSOI Inside



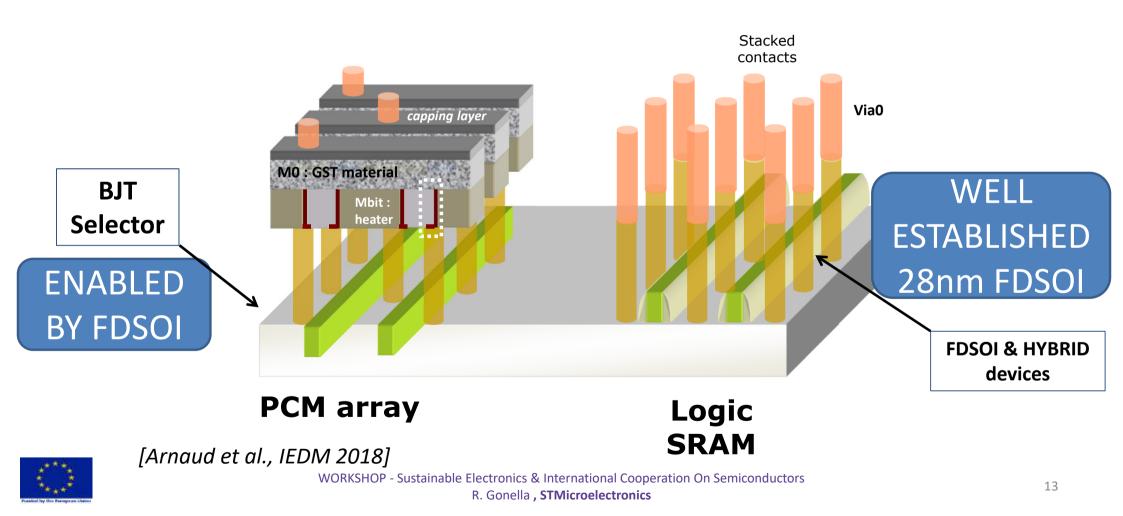
Helping car manufacturers make driving safer, greener, and more connected for everyone

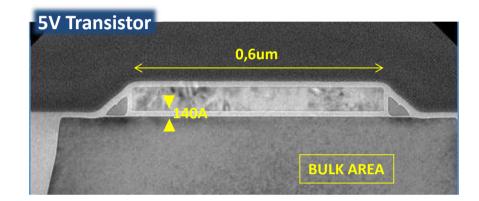


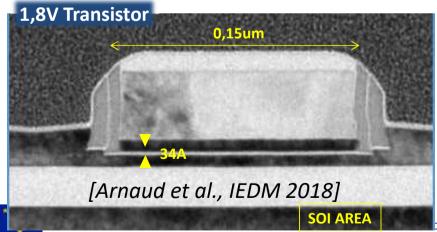
Automotive MCUs & eNVM Usages

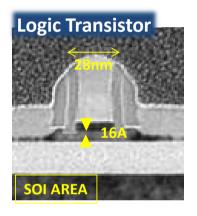


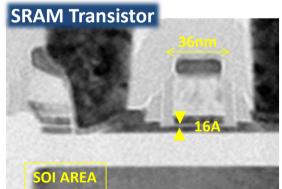
ICES MCUs Dissemination in Automotive

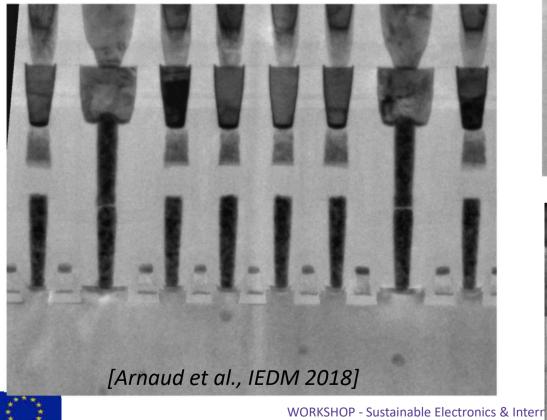


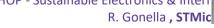


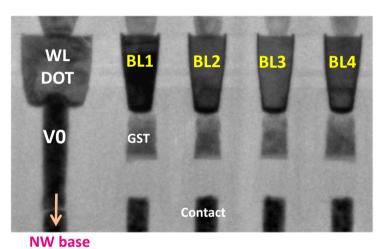


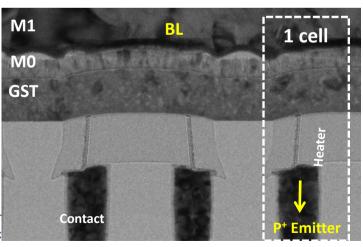

ePCM-FDSOI Co-Integration



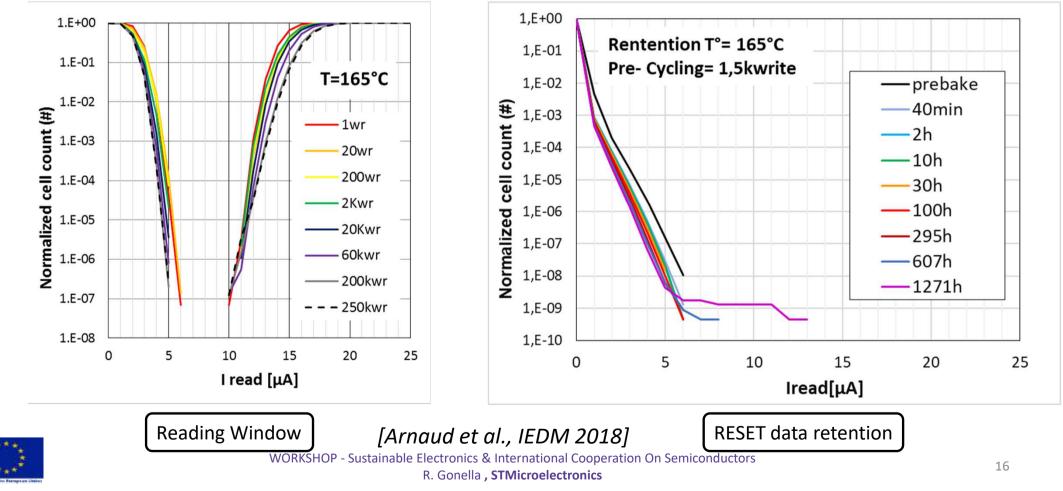



ctronics & International Cooperation On Semiconductors R. Gonella , **STMicroelectronics**



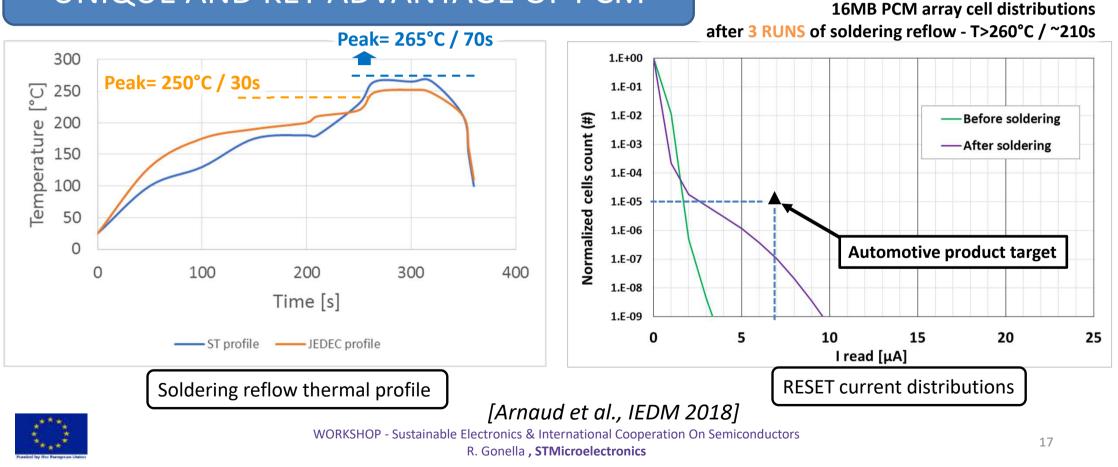

PCM Morphology (Storage element & heater)

General view of the structure



Section along WL

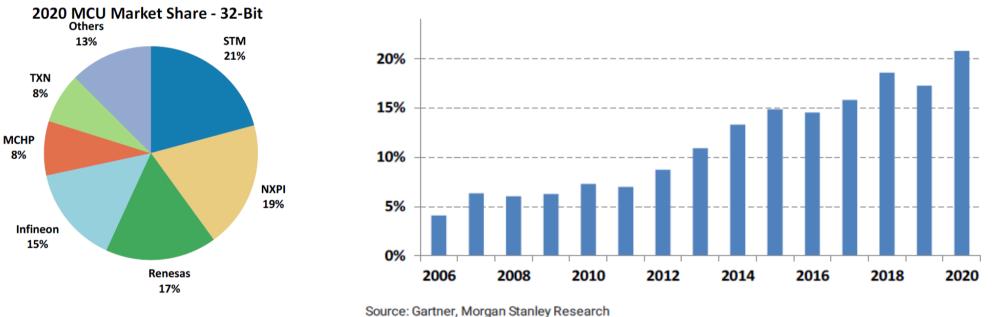
Section along BL



16MB ePCM Reliability for Grade-0 Automotive MCUs

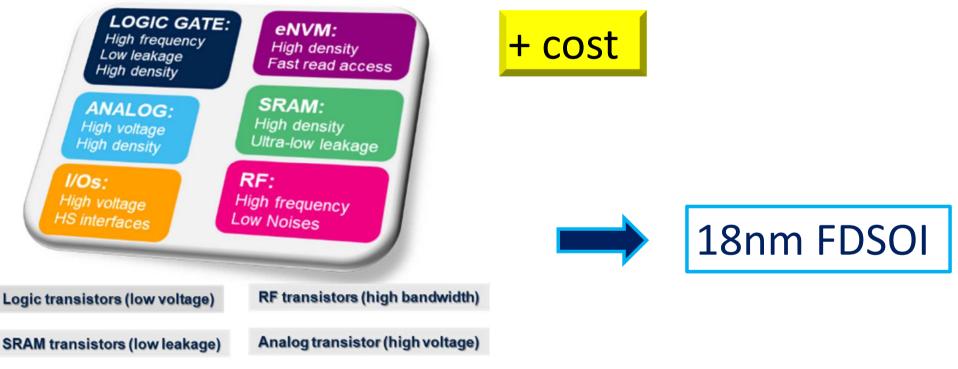
UNIQUE AND KEY ADVANTAGE OF PCM

Power & Energy – FDSOI Inside



Enabling industries to increase energy efficiency everywhere and the use of renewable energy

STMicroelectronics 32-bit MCUs growth


STM 32-Bit Market Share

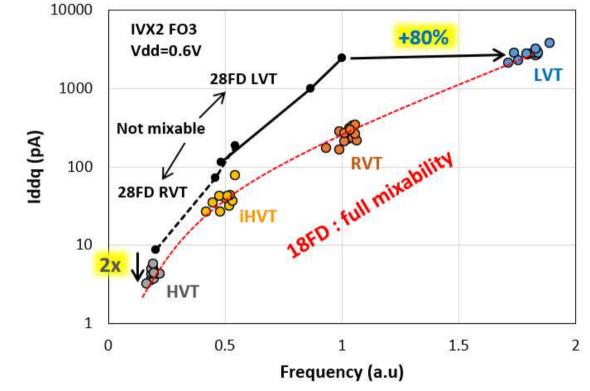
- Continuous growth of market share in MCUs, especially 32-bit
- Main business for ST is about general purpose and ULP MCUs

ULP MCUs wide range needs : birth of 18nm FDSOI

Key ULP MCUs features

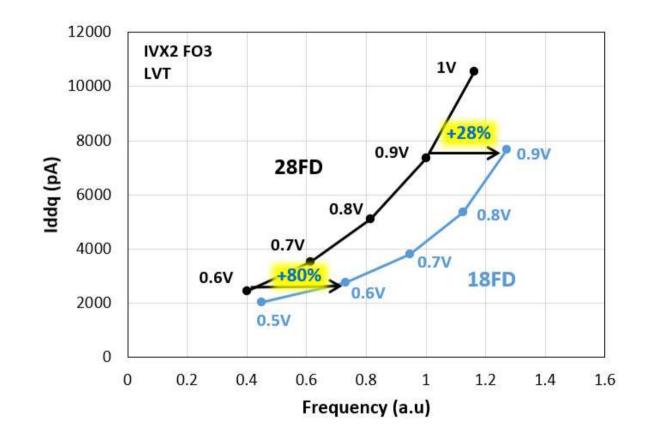
Need performance at low voltage, low leakage, density and low process cost

18nm FDSOI: global features


- Triple gate oxide: SG (0.9V), EG (1.8V), eZG (3.3V)
- 4 VTs, full flipwell
- Mx pitch: 64nm
- CPP: 100/108nm
- SRAM: 0.102µm²
- CSiGe continuous active (CNRX) standard cells scheme
- RF dedicated offer
- ePCM for eNVM

[Doohong Min et al., IEDM 2021]

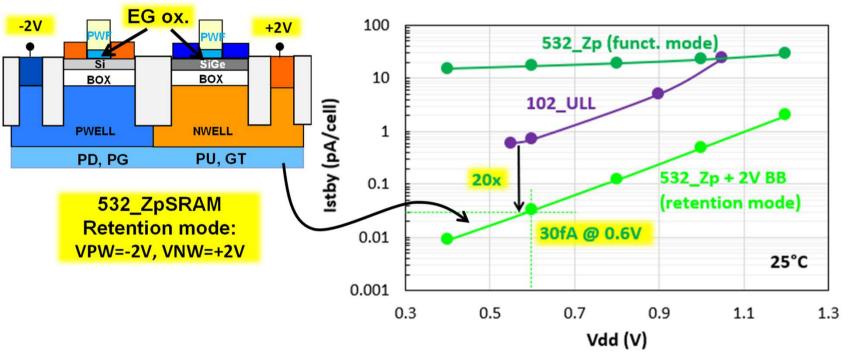
Wide range of speed/leakage



- 4 VTs mixability
- +80% perf. at 0.6V wrt 28FDSOI, 2X leakage reduction

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors R. Gonella , **STMicroelectronics** [Weber et al., IEDM 2022]

High performance at low voltage



From +28% speed at 0.9V up to +80% at 0.6V wrt 28FDSOI

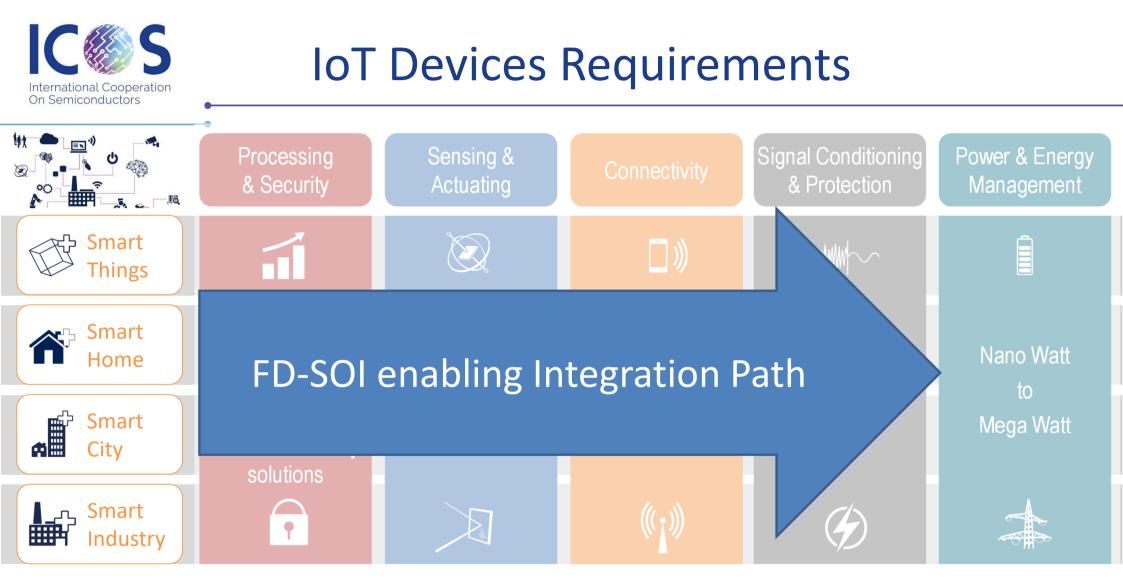
[[]Weber et al., IEDM 2022]

ZpSRAM retention leakage

[Weber et al., IEDM 2022]

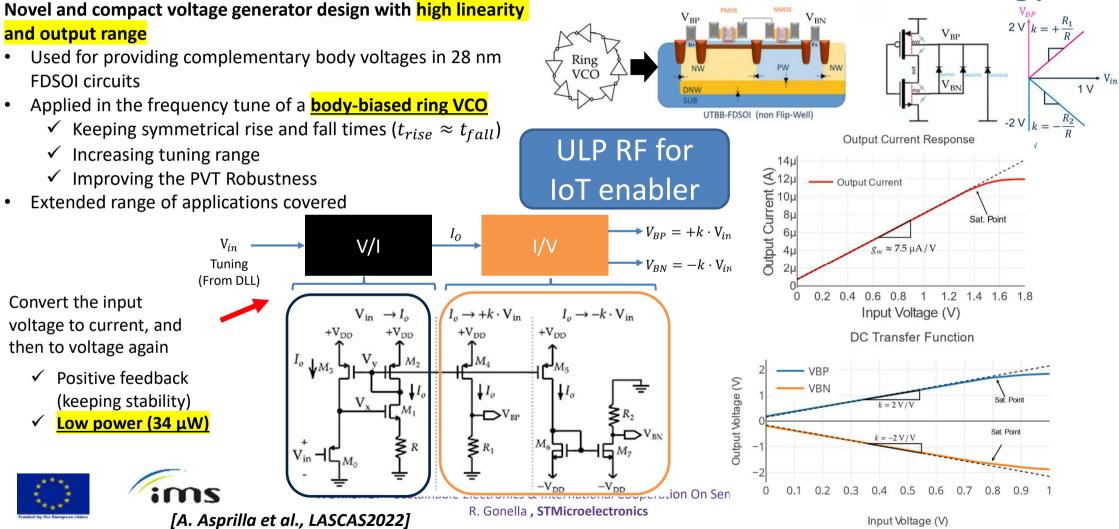
Extremely low retention leakage of 30fA/cell at 0.6V, 25°C is demonstrated, 20x lower than for the 102ULL bitcell !

IoT & Connectivity – FDSOI Inside

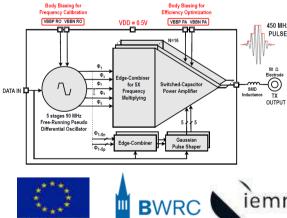


Supporting the proliferation of smart, connected IoT devices with products, solutions & ecosystems

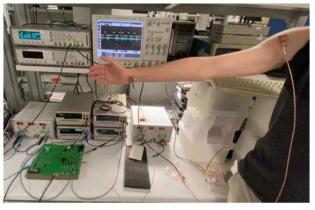
IoT Devices Requirements International Cooperation On Semiconductors Signal Conditioning Power & Energy Sensing & Processing Connectivity & Security Actuating & Protection Management Smart ₩₩/ Things Ultra-Low Power Smart Full range of to 10 cm Nano Amps Nano Watt Home **High Performance** sensors to to to and Smart Kilo Amps Mega Watt 10 km actuators **Scalable Security** City solutions ____ Smart (((†))) • ⊞₽ Industry

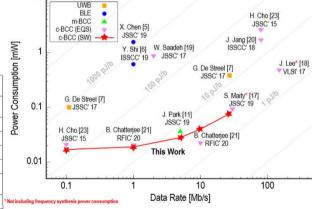


Highly Linear Large Signal Compact Voltage-to-Current Converter in 28 nm FD-SOI Technology



Ultra-Low Power Transmitter for The Human Intranet in 28 nm FD-SOI


- Energy efficient transmitter to interconnect sensors and actuators on the human body. Medical • and wellness IoT applications
- Capacitive Body-Coupled Communication in the 400-500 MHz band with dominant surface wave propagation
- Highly duty-cycled transmitter with pulse-based communication in 28 nm FD-SOI
 - Body-biasing optimization and calibration
 - FBB on power amplifier (+/- 2.2) V for improved power efficiency
 - FBB on ring oscillator for frequency tuning
 - Ultra-low voltage operation (0.5V)
 - Unlocked frequency reference


Energy efficient TX at the state of the art

Flexible data rate (100kb/s to 27 Mb/s) with 17 to 76 µW power consumption (170 to 2.8 pJ/b)

	This	Work	1	Cho 23] SC'15	J. Lee [18] VLSI' 17	W. Saadeh [19] JSSC [*] 17	J. Jang [20] JSSC' 19	S. Maity [17] JSSC'19	[RFI	atterjee 21] C' 20	J. Park [11] JSSC'19		e Streel [7] SC'17	X. Chen [5] JSSC' 19	Y. Shi [6] ISSCC' 1
Radio Technology	C-I (S	BCC W)		BCC QS)	C-BCC (EQS)	C-BCC (EQS)	C-BCC (EQS)	C-BCC (EQS)	(E	BCC QS) 802.15.6	M-BCC		WB 802.15.4a	BLE	BLE
Process 28nm Technology FD-SOI		6	5nm	65nm	65nm	65nm	65nm	6	5nm	65nm		8nm D-SOI	40nm	65nm	
Carrier Frequency [MHz] Supply Voltage [V] Data rate [Mb/s] Modulation	350 - 550 0.5		13.56	56 20 - 60 140 - 180	Baseband <100MHz	20 - 120	20 - 60 100 - 180	Baseband <100MHz	22.27		40	3500 - 4500		2400	2400
			1.2 1	Not Reported	1.1	1	1	0.7		0.6	0.55		0.6	1.2	
	0.1	27	0.1	80	100	2	80	30	1	10	5	0.11	27	1	1
	0	эк	оок	BPSK	Decision Feedback Equalization	P-OFDM BPSK	QPSK BPSK	NRZ	0	OK	оок	BPM	I/BPSK	GFSK	GFSK
TX Power Consumption [µW]	17	76	21	2600	0.35*	870	1700	93*	20.6	22.4	37	100	380	490	610
TX Energy per bit [pJ/b]	170	2.8	210	32.5	3.5	435	22	3.1	20.6	2.24	7.2	950	14	490	610
Output Power [dBm]	-33.8	-19.7	Not Reported		Not Reported	Not Reported	Not Reported	Not Reported		Not	-24.8	-20		-19	-8.4
TX System Efficiency [%]	2.44	14		Not	Not Reported	Not Reported	Not Reported	Not Reported		Not	17.8		2.6	2.6	23.6
Area [mm ²]	0.0	418	0.1672	5.76	0.00348	0.54	1.3	0.02	0	117	0.0204	0	.095	0.0166	0.494

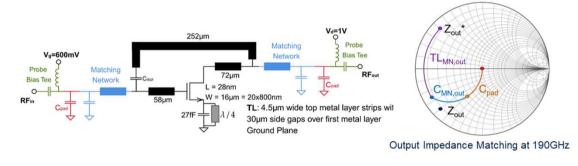
[G. Tochou et al., RFIC 2021 29 and JSSC, May 2022]

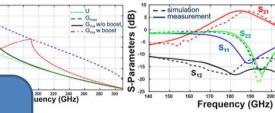
One stage gain boosted power driver at 184 GHz in 28 nm FD-SOI CMOS

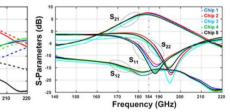
- Investigation for 28nm FD-SOI potential for next generations of standards (66)
 - Carrier frequencies above 100GHz; High data rates
 - Power amplifier with positive feedback to enhance the limited available gain
- One stage amplifier with gain boosting embedding
 - Analytical methodology to design the required embedding
 - Meticulous layout and electromagnetic simulations of passive elements
- State of the art performances:
 - Best in class trade-off for gain/power consumption
 - For the same technology
 - 3.6dB extra gain
 - Power consumption reduced by 35%
 - Demonstration of mm-Wave/THz potentialities for 28nm FD-SOI technology

[S. Sadlo et al., RFIC 2021] WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors

Towards 200GHz


integration in


FD-SOI


R. Gonella , STMicroelectronics

[12] [13]

[14]

	f _{max} (GHz)	Operation Freq. (GHz)	Gain Boosting	Structure	Gain (dB)	Gain/Stage (dB)	P _{sat} (dBm)	BW (GHz)	peak PAE (%)	P _{DC} /Stage (mW)	FOM	Area (mm ²)
I	390	184	Yes	1 CS	7.6	7.6	-3.7	20	4.2	5.1	1.30	0.12
	280	173	Yes	3 CE	18.5	6.2	0.9	8.2	-	14	1.65	0.40
	280	183	Yes	1 Case.	9.5	9.5	-2.8	8.5	-	30	1.27	0.16
	395	242	Yes	4 CS	13.9	3.48	-3.3	29.7	1.6	6	0.85	0.142
	352	257	Yes	4 CS	9.2	2.3	-3.9	12.2	0.8	6.9	0.91	0.14
JS	395	247/272	Yes	2 CS	18/15	9/7.5	0.09/-2.36	5	4.4/2.4	10.8	3.11/2.64	0.28
5nm CMOS	395	280/300	Yes	3 CS	12/9	4/3	-4.7/-5.3		1.6/1.4	6	1.26/1.15	
0nm CMOS	275	213	No	9 CS	10.5	1.17	-3.2	13	0.75	4.7	0.79	0.12
30nm SiGe	450	200	No	2 Casc.	17	8.5	-3.5	44		9	1.40	0.24
anm FD-SOI	390	160	No	4 CS	15.7	3.93	1.3	23	-	8	0.42	0.34

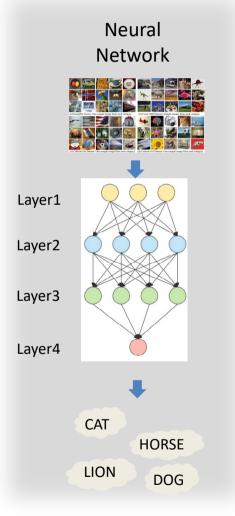
 $*FOM = \frac{\sqrt[n]{Gain}}{U(f)}$: where n is the number of stages and U(f) is the unilateral power gain of the device at the frequency of operation.

30

AI – FDSOI (and we did not ask ChatGPT!)

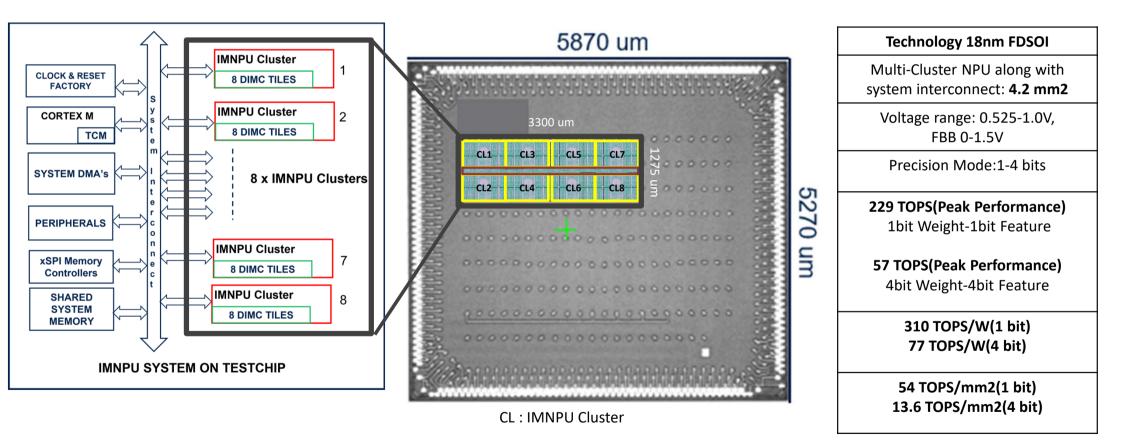
AI computing at the edge

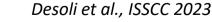
Edge AI poses significant restrictions:


- Amount of on-chip storage (for activations, and weights)
- Die size (cost)
- Energy consumption (e.g. for battery operation)

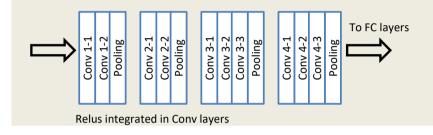
What we are looking for:

- Ease of reconfigurability/programmability (to support for different types of networks and products)
- Computation at reduced precision to save cost and power (neural networks often work well with reduced)
- Processing performance in the TOPs range.
- High efficiency in terms of TOPs/Watt and TOPs/mm2




Desoli et al., ISSCC 2023

IMNPU integration in 18nm FDSOI

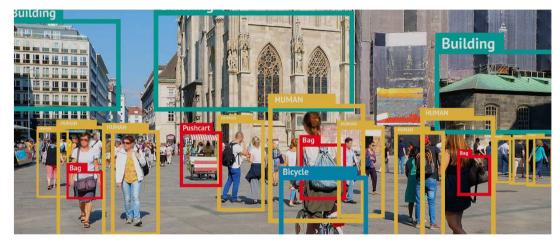


Real world performance evaluation

Object detection with VGG16

International Cooperation On Semiconductors

(scaled down version @ 112x112 pixel resolution)



Measured at 0.525V and 600MHz with 1.5v FBB

configuration	# of MACS	# of cycles/inf	Inf/sec	TOPS/W
1 cluster	8.15E+08	602513	996	46.8
max clusters	0.15E+00	87719	6840	40.0

Very slow system frequency for battery powered always-on applications

Example: always on inference running on a dynamic partition**

~1.6 GOPs/inf image object detection @ 10FPS -> 300 350uW @ 6 MHz + I/O power + Camera sensor (e.g. Sensor consumption: 200-300uW*) -> 1-1.5 years on 2 AA batteries

* e.g. <u>https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/</u> ** Assumption: with embedded ePCM for weights

Desoli et al., ISSCC 2023

Al in FDSOI – Take-away

- Al applications in edge devices require a specific focus on cost and energy efficiency.
- A dataflow orient architecture has been used to integrate DIMC tiles into a Neural processing Unit (NPU).
- Our 18nm FDSOI SoC integration demonstrates the potential of in-memory computing tiles integrated in a NPU architecture for AI processing in edge devices.

System	NVIDEA Titan X	ST ORLANDO	ST STM32N6	This work 4-bit mode	This work 1-bit mode
Technology	16FF	28nm FDSOI	16FF	18nm FDSOI	18nm FDSOI
Calc precision	floating point single precision	16-bit signed fixed point	8-bit signed fixed point/ integer scale offset	4-bit signed, fixed point	1-bit
Power efficiency	0.0439 FLOPS/W	2.9 TOPS/W	up to 5 TOPS/W	77 TOPS/W	310 TOPS/W
Peak calculation density	0.023 FLOPS/mm ²	0.188 TOPS/mm ²	0.72 TOPS/mm ²	13.6 TOPS/mm ²	54 TOPS/mm ²

Desoli et al., ISSCC 2023

FDSOI Augmented platform – take aways

- Augmented FDSOI platform enable ST and his partner to address multiple domain of today semiconductor applications
- Versatile, with the extra knob brought by the *fourth terminal*, enable extremely low-power application, to implement **sustainable** and eco-friendly devices
- Simple, hence highly manufacturable technologies, enabling a wide range of scalable applications
- FDSOI derivative embedded-non-volatile and RF evolutions offers ST and his partners an **economically sustainable** roadmap

Aknowledgements

- The authors would like to warmly thanks all ST colleagues who contributed to the development of FDSOI, his derivative technologies solutions and the numerous R&D and commercial implementations from Crolles, Agrate, Grenoble, Rousset, Greater Noida,... ST premises without whom many of these foils wouldn't have been materialized
- Special thanks to ST Fellows Franck Arnaud, Andreia Cathelin, Andrea Redaelli, Nitin Chawla, Giuseppe Desoli
- A last word for our partners from CEA-LETI in Grenoble for their instrumental contribution to the FDSOI birth and growth

THANK YOU

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

www.icos-semiconductors.eu

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors