ICOS Workshop – Sustainable Electronics & International Cooperation On Semiconductors

2023-04-27 Grenoble, France (virtual)

IRDS technology roadmaps for Cryogenic Electronics and Quantum Information Processing (CEQIP)

CEQIP Summary Presentation

2022 Edition and 2023 Update

- IRDS IFT Cross-team and Collaborative Alignments
- Coverage
 - Superconductor Electronics (SCE)
 - Roadmap (partial)
 - Cryogenic Semiconductor Electronics
 - Quantum Information Processing (QIP)
 - 2022: QC not yet ready for roadmaps
 - 2023: Roadmap started for superconducting QC
- Summary slides by area:
 - Difficult Challenges: Near- and Long-term
 - Technology Assessment Updates
 - New Technology Requirements
 - Breakthroughs in Technology, Research
- Recommendations and Plans
- Appendix: Team Members

IRDS IFT Cross-team and Collaborative Alignments

IFT: International Focus Team

- **CEQIP** primary interactions with IRDS teams
 - AB : Application Benchmarking
 - SA : Systems and Architectures
 - BC: Beyond CMOS
 - **MM**: More Moore
 - **OSC**: Outside System Connectivity
 - **PI**: Packaging and Integration
- External Organizations (contact person)
 - IEEE Quantum Initiative (Erik DeBenedictis)
 - QED-C: Quantum Economic Development Consortium (Erik DeBenedictis)
 - UK National Quantum Computing Centre Roadmap (Michael Cuthbert)

IFT structure of the IRDS

2023 Report: Superconductor Electronics (SCE)

2.1. Introduction to SCE

2.2. Applications and Market Drivers for SCE

- 2.2.1. Cloud (Digital Computing)
- 2.2.2. Measurement and Calibration Systems
- 2.2.3. Communications
- 2.2.4. Quantum Computing

2.3. Present Status for SCE

- 2.3.1. Logic
- 2.3.2. Memory
- 2.3.3. Switching Devices
- 2.3.4. Other Circuit Elements for SCE
- 2.3.5. Architectures and Applications
- 2.3.6. Fabrication for SCE
- 2.3.7. Electronic Design Automation (EDA) for SCE
- 2.3.8. Packaging and Testing for SCE
- 2.3.9. Interconnects for SCE
- 2.3.10. Refrigeration

2.4. Benchmarking and Metrics for SCE

- 2.4.1. Device and Circuit Benchmarking
- 2.4.2. Scaling of Devices and Circuits
- 2.4.2. System and Application Benchmarking
- 2.5. Active Research Questions for SCE
- 2.6. Roadmaps for SCE

a. Vertical orientation

b. Horizontal orientation

c. Electrical symbol

Figure CEQIP-1. Josephson Junction Device Structures

Figure CEQIP-3. Superconductor (S) switching devices

SCE Status

2023 Update

- Status summary
 - SCE is a developing technology with a small market and big promise
 - Quantum information processing (QIP) is an emerging driver
 - Logic: Many competing approaches
 - Memory: Little available; no clear solutions
 - Fabrication: Research + some commercial
- Key needs
 - Power supply
 - Sensitivity to external magnetic fields, currents, and trapped flux
 - Area reduction
 - Logic
 - Memory
 - Fabrication for scale
 - Testing

Logic: Searching for a Winning Combination

Semiconductor logic families

Superconductor logic families

<u>1960s</u>	<u>1980s</u>		<u>2010s+</u>
ECL	ECL		– RSFQ
DTL	DTL		– ERSFQ
TTL	TTL		– eSFQ
NMOS	NMOS		– DSFQ
PMOS	PMOS		– HFQ
			– nTron
CIVIO3		Vdd T	– xSFQ
			~ SFQ-AC
	Vin	Vout	~ RQL
	0—	• • • • •	~ PML
			~ AQFP
			~ DQFP
en.wikipedia.c	org/wiki/CMOS	Vss	~ RQFP
			~ PCL
	rebooting	A Force on Rebooting Computing	6

<u>2030s</u>	<u>Consi</u>
	• Per
	• Pov
	0
	0
S	0
0	• Cos
	0
	0
	0
	0
	0
	• Coi
	•

iderations:

- rformance
- wer
 - Static
 - Dynamic
 - Supply
- st
 - Ease of design
 - Area
 - Fabrication process
 - Yield
 - Shielding
- mpatibility

Superconductor Digital Logic Families

IEEE COMPUTER SOCIETY **TFRC**

Task Force on Rebooting Computing

IEEE

rebo

O

	\tilde{Q}_{i}		Static	Dynamic power	Trans-	Clocked	JJ count	
Name	SF	Power	Power	per switch	formers	Gates	$log_{10}(n)$	
RSFQ : rapid single flux quantum	1	– DC	High	$lpha I_c \Phi_0 f$	-	Yes	4.4	Othe
LR-RSFQ: inductor-resistor RSFQ	1	- DC	Low	$lpha I_c \Phi_0 f$	-	Yes	1.6	
LV-RSFQ: low-voltage RSFQ	1	- DC	Low	$lpha I_c \Phi_0 f$	-	Yes	3.7	• Are
ERSFQ: energy-efficient RSFQ	1	– DC	0 *	$I_b \Phi_0 f$	-	Yes	3.8	• Cu
eSFQ: efficient SFQ	1	– DC	0 *	$I_b \Phi_0 f$	-	Yes	3.4	
Clockless SFQ	1	– DC					2.8	່ • To
DSFQ : dynamic SFQ	1	– DC	+	+	-	Some	0.7	• II r
TSFQ: temporal SFQ	1	– DC			-	No	(2.8)	55 F
xSFQ : alternating SFQ	2	- DC	+		-	No		• Sca
nTron: nanowire cryotron	1	- DC	~0	varies	-	Yes	1.5	
hTron: heater-cryotron nanowire	1	– DC	~0	varies	-	Yes	1.2	
HFQ : half flux quantum	0.5	– DC	Low		-	Yes	1.2	
SFQ-AC: AC-powered SFQ	1	~ AC	++		Р	Yes	5.9	
RQL: reciprocal quantum logic	2	~ AC	Low	$lpha I_c \Phi_0 f 2/3$	P, G	Some	4.9	
PML: phase mode logic	1	~AC	Low	$\alpha I_c \Phi_0 f/3$	P, G	Some		
PCL: phase conserving logic	1	~ AC	Low		G	No		
AQFP: adiabatic quantum flux parametron	-	~ AC	~0	$\alpha I_c \Phi_0 2f \tau_{sw}/\tau_x$	P, G	Yes	4.3	
RQFP : reversible QFP	-	$\sim AC$	~0	$\alpha I_c \Phi_0 2f \tau_{sw}/\tau_x$	P, G	Yes	1.4	

r metrics?

- ea
- rrent
- gic depth
- per gate
- lability

A critical need

- Several approaches
- Memory problems
 - Small memory capacity
 - Low area density
 - No commercial sources

2023 Table CEQIP-6 Superconductor Memory Status

	-							
	N	Bit Cell Area	Laten	cy [ns]	Energ	y [fJ]	Static	
Name	RA	[µm²]	Read	Write	Read	Write	Power	Bits
SR : shift register, ac-biased		300 (15×20)						202 280
SR : shift register			0.02	0.02	0.1	0.1	0.2 mW	64
VTM: vortex transition memory	\checkmark	99 (9×11)	0.10	0.10	100	100		72
JJ-RAM: Josephson junction RAM	\checkmark	484 (22×22)					4.5 mW	4096
RQL-RAM: reciprocal quantum logic	\checkmark	1452 (33×44)						1024
PRAM: PTL-RAM	\checkmark	1452 (33×44)						512
SHE-MTJ: Spin Hall effect magnetic tunnel junction	\checkmark	2470 (38×65)	0.10	2	1000	8000		16
SNM : superconducting nanowire memory	\checkmark	26.5 (5×5.3)	0.10	3	10	10		8
Hybrid: JJ-CMOS	\checkmark		2~4	2~4	100	100		65 536
	-							

Recent progress: Superconductor Electronics (SCE)

New logic family: Pulse conserving logic (PCL)

- Logic
 - Dual rail signals (free inversion) •
 - 12 levels of logic at 30 GHz
 - Density ~10 M gates/cm²
 - Gates include: OA2, OMA3
- Memory: Josephson SRAM
 - 4 MB/cm² density
 - 30 GHz throughput
- Power supply
 - AC power and bias currents
 - Zeroth-order resonance (ZOR) of uniform amplitude and phase
 - Efficiency increases with *f* and activity factor •

Many questions, demonstration needed

9

memory cell $(1 \,\mu\text{m} \times 2 \,\mu\text{m})$

Q. Herr +, 2023, doi: 10.48550/arXiv.2303.16792

Roadmap: Fabrication for Superconductor Electronics (SCE)

Year	2022	2023	2024	2025	2026	2027	2028			
Digital SCE Fabrication										
"Node Range" label (nm)	"250"	"250"	"150"	"150"	"150"	"150"	"90"			
Substrate material, maximum size (mm)	Si, 200	Si, 200	Si, 200	Si, 200	Si, 200	Si, 200	Si, 300			
<i>N</i> iring										
Superconductor	Nb	Nb	Nb	Nb	Nb	Nb	Nb			
Superconductor layers	8	8	10	10	10	10	12			
Linewidth, minimum (nm)	250	250	150	150	150	150	90			
lc, minimum (μΑ/)	200, 1200	200, 1200	100, 580	100, 580	100, 580	100, 580	50, 290			
Junctions, Switching										
Junction materials	AI/AIOx	AI/AIOx	AI/AIOx	AI/AIOx	AI/AIOx	Al/AlOx	Al/AlOx			
Junction layers	1	1	2	2	2	2	2			
Junction critical current densities J_{c} ($\mu A/\mu m^{2}$)	100,	100,	100,	100,	100,	100,	100,			
	600	600	600	600	600	600	600			
Minimum junction diameter (nm)	500	500	350	350	350	350	250			
Minimum junction critical current Ic (uA)	20,	20,	10,	10,	10,	10,	5,			
	118	118	58	58	58	58	29			
Killer defect density per layer (1/cm ²)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Jc wafer-to-wafer variation	3%	3%	3%	3%	3%	3%	3%			
Maximum relative spread (σ /lc) at minimum lc	3%	3%	3%	3%	3%	3%	3%			
Junctions, Magnetic (Pi)										
Junction materials			Ni	Ni	Ni	Ni	Ni			
Junction layers	0	0	1	1	1	1	1			
Junction critical current densities (µA/µm ²)			3000	3000	3000	3000	3000			
Junction diameter, minimum (nm)	500	500	350	350	350	350	350			
Resistors										
Resistor material	Mo, MoNx	Mo, MoNx	Mo, MoNx	Mo, MoNx	Mo, MoNx	Mo, MoNx	Mo, MoNx			
Resistor layers	1	1	1	1	1	1	1			
Resistor sheet resistance (Ω/\Box)	2, 6, 10	2, 6, 10	2, 6, 10	2, 6, 10	2, 6, 10	2, 6, 10	2, 6, 10			
HKI (high kinetic inductance) Layers										
HKI material	MoNx	MoNx	NbNx	NbNx	NbNx	NbNx	NbNx			
HKI layers	1	1	1	1	1	1	1			

Difficult Challenges (Near-term) for SCE

Technology roadblocks, gaps, and possible disconnects within the roadmap

Near-Term Challenges: 2022–2029	Summary of Issues (why is it a challenge?)
Logic (current implementations)	 Many competing approaches Sensitivity to magnetic fields and fabrication variation Supply current is mostly spent biasing junctions Power and clock pulse distribution add complexity and jitter Scalable to solve big problems (DSP, AI, QC, HPC)
Memory	 Density is too low for single-flux-quantum memory (like SRAM) Multiplexing is difficult for single-flux-quantum logic New materials and processes add cost
Phase shift elements	 Present approach (external supply current through inductors) does not scale. DC bias is ~ 0.7 <i>Ic</i> per junction, so chip supply current becomes too large for > 1 million junctions. Inductors require shielding. Phase batteries such as pi junctions require new materials, device layer.
NbN or NbTiN fabrication process	 NbN and NbTiN now deposited by reactive sputtering, which is difficult to make uniform across a 200 mm or 300 mm diameter wafer CVD or ALD processes will require development

Difficult Challenges (Long-term) for SCE

Technology roadblocks, gaps, and possible disconnects within the roadmap

Long-Term Challenges: 2030–2037	Summary of Issues (why is it a challenge?)
Switching device scalable below 200 nm	 Nb/Al-AlOx/Nb Josephson junctions are almost good enough Alternatives will require different materials and fabrication processes, possibly including magnetic materials
3-terminal switching device	 Small available flux ~ 2 mA·pH or voltage ~ 1 mV Fabrication more difficult than the traditional tri-layer device
Integrated circuit fabrication processes	 Foundries for commercial production now process 200 mm or smaller wafers using equipment lacking state-of-the-art capability. Temperatures are currently limited to < 200 °C, which requires different processes than CMOS technology, which has a limit of 400 °C. Circuit approaches and fabrication processes are interdependent, requiring co-development. Magnetic materials need to be added.
Optical input/output (I/O)	 Heat budget in the low-temperature environment is very low. Optical data links require development of efficient SFQ-to-optical converters.

• But can these wait?

Cryogenic Semiconductor Electronics

2023 Update

3.1. Introduction

3.2. Applications and Market Drivers for Cryo-Semi

3.3. Present Status for Cryo-Semi

- 3.3.1. Transistor Characterization and Modeling
- 3.3.2. Applications \geq 10 K
- 3.3.3. Applications < 10 K

3.4. Active Research Questions for Cryo-Semi

Qubit Control and Readout: Basics

Microwave engineering

- **Control**: Microwave signals M→ change the qubit state
- Readout: Microwave transmission depends on qubit state

Blais +, 2004, doi: <u>10.1103/PhysRevA.69.062320</u>

Qubit Control: Room-Temperature Electronics

The starting point

- Qubit Control (HDAWG)
 - Flux drives
 - Baseband RF drives
- Qubit Readout (UHFQA)
 - Baseband signal generation and analysis (FPGA)
- Frequency conversion electronics (up, down) for qubit drive and readout
- Synchronization using PQSC
- Next steps:
 - Commercial, modular equipment customized for qubit control and readout

Quantum computing support applications

Qubit interface, control, and readout using cryogenic semiconductor electronics

[1] S. J. Pauka *et al.*, "Characterizing quantum devices at scale with custom cryo-CMOS," *Phys. Rev. Appl.*, vol. 13, no. 5, p. 054072, May 2020, doi: 10.1103/PhysRevApplied.13.054072.

[2]. B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon, and M. Babaie, "Characterization and analysis of on-chip microwave passive components at cryogenic temperatures," *IEEE J. Electron Devices Soc.*, Apr. 2020, doi: 10.1109/JEDS.2020.2986722.

Quantum computing support applications

Development continues

- Digital to analog converter (DAC)
 - 32 KiB on-chip memory (SRAM)
 - 14 nm CMOS technology
 - Output at 4 K temperature: Qubit control waveforms in the 1 GHz to 18 GHz frequency range
 - Sampling rate: 40 GSa/s max.
 - 40 mW power dissipation at 4 K

Prathapan +, "A cryogenic SRAM based arbitrary waveform generator in 14 nm for spin qubit control," 2022, doi: <u>10.1109/ESSCIRC55480.2022.9911459</u>.

Quantum Information Processing (QIP)

2022 Edition

4.1. Introduction

4.2. Applications and Market Drivers for QIP

- 4.2.1. Optimization
- 4.2.2. Cryptanalysis
- 4.2.3. Quantum Simulation
- 4.2.3. Quantum Machine Learning

4.3. Present Status for QIP

- 4.3.1. Regional Efforts in QIP
- 4.3.2. Analog Quantum Computing: Status
- 4.3.3. Gate-Based Quantum Computing: Status
- 4.3.4. Topological Quantum Computing: Status
- 4.3.5. Quantum Communication and Sensing: Status

4.4. Benchmarking and Metrics for QIP

4.5. Active Research Questions for QIP

Quantum computing: Still a race with several contenders

	Natural qubits			Synthetic qubits					
Qubit:	⊳ ooooo⊲ ∠	Neutral atom	र्र् वववव Photonic	了 了 Superconducting	Quantum dot	Topological	N-V diamond		
Basis	Electron spin of ionized atoms	Internal states of atoms trapped in an optical lattice	Optical photons in waveguides	Nonlinear oscillator circuits containing Josephson junctions	Impurity dopants in a semiconductor	Majorana particles in nanowires	Spin state of N atom + vacancy defect in diamond		
$E_{transition}$ (= hf, k _B T)	1 — 700 THz 50 — 30,000 К	~ 4 MHz ~ 200 μK	100 – 200 THz 4,800+ К	2 – 10 GHz 0.1 – 0.5 K	10 – 50 GHz 0.5 – 2.5 K	?	300 – 800 THz 15,000+ K		
T _{system}	1 – 300 K	<mark>4</mark> – 300 K	1 – 300 K	0.01 – 0.05 K	0.1 – 1 K	?	1 – 300 K		
Pros	Long lifetime, low gate error	Many qubits, 2D, maybe 3D	Linear optical gates, photonic IC	Fast gates, adjustable, easy fabrication size	High density, CMOS compatible	Lower errors	Room temperature operation?		
Cons	Slow gates, vacuum, many lasers	Hard to control individual qubits, noise, high errors	Superconducting single photon detectors	T noise, variability, large size, mK temperatures	T noise, low temperatures, high errors	Device? Magnetic field?	Variability, detector?		

System temperatures vary by approach

Gate-Based Quantum Computing Status Summary

Early attempt at comparisons

• The overall picture is that no approach has emerged as most likely to scale to the millions of qubits needed.

Qubit type	Quantum	Qubit	Qubit	2-qubit	Quantum	Qubit	System	
	volume	count	connectivity	gate depth	teleportation	function	scalability	
Superconducting	512	127	3.25	667	0.42 m	<mark>fair</mark>	fair	
Trapped ion	4096	32	10	> 100,000	yes	<mark>fair</mark>	fair	
Quantum dot	—	4	1	104	-	<mark>poor</mark> -fair	fair-good	
Photonic	_	4			1400 km	poor	fair	

2022 Table CEQIP-23

Quantum volume metric: <u>https://en.wikipedia.org/wiki/Quantum_volume</u> 2-qubit gate depth: ratio of coherence time divided by 2-qubit gate time (T_2*/t_{2q})

Better method needed!

Searching for a winning combination (QC edition)

Automobile analogy, circa 1900

The eventual winner was not obvious at the time.

Application Requirements

Key applications require millions of qubits and billions of quantum gate operations

- **Derivative pricing**: Financial market pricing of options
- **FeMoco**: Find the complex chemical process behind nitrogen fixation
- Fermi-Hubbard: model for strongly-correlated electronic systems
- **RSA**: Breaking RSA encryption (Rivest–Shamir–Adleman) with the indicated number of bits
- Ru-catalyst: Understand and possibly replace the Ru catalyst used in the Haber-Bosch process to produce ammonia

 $-\mathbf{T}$ – T gate: $\pi/4$ rotation around Z axis on the Bloch sphere

Quantum Computing Process Overview

Gate Operation Cycle in Quantum Computing

Biercuk and Stace, "Quantum error correction at the threshold," *IEEE Spectrum*, 2022, doi: <u>10.1109/MSPEC.2022.9819881</u>

Distance-3 Surface Code Qubit Chip

- Chip size ~ 15 mm × 15 mm
- Qubits are too small to see!
 - D 9 Data qubits (3×3 grid)
 - X 4 X-type auxiliary qubits (phase flip errors)
 - Z 4 Z-type auxiliary qubit (bit flip errors)
 - 9+4+4 = **17** qubits total
- Plenty of space for control line connections (low overall circuit density)
- Logical qubit error probability was only slightly worse than the physical qubit error probability, indicating progress towards error reduction

Krinner +, "Realizing repeated quantum error correction in a distancethree surface code", 2022, doi: <u>10.1038/s41586-022-04566-8</u>

Error Inference by 'Decoding'

Use syndrome pattern to determine error location, type

• Error types

- Bit flip (Z) errors detected by Z stabilizers
- Phase flip (X) errors detected by X stabilizers
- Bit + phase flip (Y) errors
- Measurement errors
- Limited number of correctable errors
 - Surface code = (d-1)/2
 - Depends on the EC code

Error Correction: Decoder Considerations

Why decoders for superconducting quantum computing must be fast

27

- Difficulty grows with
 - Code size
 - Error number and characteristics
 - Measurement rate
- Example:
 - d = 30 surface code (1799 physical qubits)
 - 1 μs per error correction cycle (<< T1, T2)
 - = ~ 1 Gbit/s per logical qubit
 - = ~ 1 Pbit/s per million logical qubits
- Lookup tables can't handle the complexity!
- Latency determines error correction cycle time and thus overall computation speed
- More system-level tradeoffs

Newman, "Decoding experimental surface code data," Google Quantum Summer Symposium, July, 2022.

Decoder Options

Need fast and accurate pattern recognition

- Computation by
 - Classical, digital processing (supercomputer?)
 - Neural network
 - Quantum processing (?)

Overwater +, "Neural-network decoders for quantum error correction using surface codes," 2022, doi: <u>10.1109/TQE.2022.3174017</u>

Varsamopoulos +, "Decoding surface code with a distributed neural network–based decoder," 2020, doi: <u>10.1007/s42484-020-00015-9</u>

Error Correction: Alternatives to the Surface Code

There is more than one way to skin a qubit!

- Low-density parity check (LDPC) codes [1]
 - 2D, 4D hyperbolic codes
 - Freedman-Meyer-Luo codes
 - Tensor products
 - Fibre bundle codes
 - Lifted product codes
 - Balanced product codes
- Logical blocks [2]

COMPUTER

- Fractal and topological codes [3, 4]
 - [1] Breuckmann +, "Quantum low-density parity-check codes," 2021, doi: <u>10.1103/PRXQuantum.2.040101</u>
 - [2] Bombin +, "Logical blocks for fault-tolerant topological quantum computation," 2021, arXiv:2112.12160
 - [3] Zhu +, "Topological order, quantum codes, ... fractal geometries," 2022, doi: <u>10.1103/PRXQuantum.3.030338</u>
 - [4] Kubica +, "Single-shot quantum error correction ... toric code", 2022, doi: <u>10.1038/s41467-022-33923-4</u>

Logical block formation [2]

3D fractal surface code [3]

Limits for superconducting qubit control

Where are the breakpoints?

- **XQsim**: quantum control processor simulator (open-source, cross-technology)
- Scalability analysis
 - Maximum number of qubits subject to constraints (delay, power, area)
 - Did not include QC interface

CMOS @ 4 K scalability analysis [1, Fig. 17b]

 Byun +, "XQsim: modeling cross-technology control processors for 10+K qubit quantum computers," Jun. 2022, doi: <u>10.1145/3470496.3527417</u>.

Fault-tolerant
quantum computer
system overview
[1, Fig. 1]

Error dec	oder
1e-3	Phys. error rate
15	Code distance
QECOOL:	Baseline error decoder
Physical of	quantum gate latency
14 ns	1-qubit gate
26 ns	2-qubit gate
600 ns	Measurement
Refrigera	tion and wiring
1.5 W	4 K power budget
620 cm ²	4 K area budget
31 mW, 1	.0 Gb/s coaxial cable 300-4 K
Clock free	quency
1.5 GHz	CMOS @ 4 K or 300 K
21 GHz	RSFQ or ERSFQ @ 4 K
Qubits co	ontrollable (limiting factor)
<mark>1,700</mark>	CMOS @ 300 K (heat leak)
<mark>9,800</mark>	CMOS @ 4 K (delay)
4,600	RSFQ @ 4 K (power)
<mark>59,000</mark>	ERSFQ @ 4 K (power)
?	AQFP @ 4 K (?)

Error Correction Resources

Number of physical qubits per logical qubit depends on several factors

- Examples:
 - Surface code [1] with $p_{th} \approx 1.E-2$, Perfect decoder, Logical error: $p_L = 1.E-18$
 - Toric code [2] with $p_{th} \approx 1.E-1$, Perfect decoder, Logical error: $p_L = 1.E-15$
- Needed:
 - Better EC codes (high threshold)
 - Hardware to implement the EC code
 - Lower gate error rates (~ 100× below threshold)

Sevilla and Riedel, "Forecasting timelines of quantum computing," Dec. 2020. <u>arXiv:2009.05045</u>
 Biercuk, QCE, 2022-09-20; extrapolation based on: Watson +, New J. Phys. 16, <u>093045</u> (2014)

QEC Status Update

First demonstration of improvement in the logical error with increasing code size

- Google Quantum hardware
 - 72-qubit superconducting device
 - 17-qubit distance-3 (d = 3) surface code
 - 49-qubit distance-5 (d = 5) surface code
 - 49-qubit d = 3 to 25 repetition codes
- Surface code logical error improvement was slight but larger than the experimental error
- Next steps:
 - Bigger codes
 - Lower physical qubit error rates
 - Cosmic ray mitigation
- Milestone 2 of 6 to get to a 1000 qubit QC

Acharya +, "Suppressing quantum errors by scaling a surface code logical qubit," *Nature*, Feb. 2023, doi: <u>10.1038/s41586-022-05434-1</u>

Superconducting Qubit Roadmap

Year

Google: https://www.cnet.com/tech/computing/quantum-computer-makers-like-their-odds-for-big-progress-soon/

IBM: https://research.ibm.com/blog/ibm-quantum-roadmap-2025

Superconducting QC Roadmap

Metric	2020	2022	2024	2026	2028	2030	2032
Qubit growth per year	2×	2 ×	2×	2 ×	2×	2 ×	2×
Qubit count	5.5e+1	2.2e+2	8.8e+2	3.5e+3	1.4e+4	5.6e+4	2.2e+5
Qubit type	Transmon	Transmon	Transmon	Transmon	?	?	?
Qubit lifetime T1, med. [ms]	0.5					10	
2 qubit gate error rate, median (p_2Q)	1.0e-2	Im	Pro	gre	29	1.0e-4	
Gate depth (1/p_2Q)	1.0e+2					1.0e+4	
Error correction code	Surface	Surface	Surface	Surface	Surface	Surface	?
Phys. qubits per logical qubit				1800	1800	1568	1568
Logical qubit count				1	7	35	140
Logical qubit error rate						1.0e-15	
Control type, temp. [K]	CMOS, 300	CMOS, 300	CMOS, 300	CMOS, 4	CMOS, 4	CMOS, 4	SCE, 4
SCE control complexity [JJ]	1.1e+5	4.5e+5	1.8e+6	7.2e+6	2.9e+7	1.2e+8	4.6e+8

2022 Difficult Challenges (Near-term) for QC

Technology roadblocks, gaps, and possible disconnects within the roadmap

Near-Term Challenges: 2022–2029	Summary of Issues (why is it a challenge?)
Physical qubits	 Design and fabrication of qubit devices with enhanced qubit coherence times and gate fidelities
Logical qubits	 Implementation of fully error-corrected logical qubits and protected gate operations
Readout of qubits	Development of scalable, cryogenic qubit readout hardware
Interconnects, cryogenic to room temperature	 Development of low thermal conductance and high bandwidth interconnects between different temperature stages of cryogenic- and room-temperature electronics
Control electronics	• Location close to the qubits has the lowest latency but too close can disturb the qubits. Operating environments close to the qubits can be challenging (e.g., cryogenic, high vacuum).

• We still don't know how to build a full-scale quantum computer.

Recommendations

For the 2024 Edition

1. Superconductor Electronics (SCE)

- Roadmap based on driver applications (QC, others?)
- Difficult challenges need timelines to solution
- 2. Cryogenic Semiconductor Electronics (Cryo-Semi)
 - Continue to monitor status

3. Quantum Information Processing (QIP)

- Roadmap superconducting quantum computing, start roadmap for ion trap QC (others?)
- Members needed to improve coverage!

Backup

2023 CEQIP Members

Additions for 2023

28 total

References

- 1. "IRDS 2022: Cryogenic Electronics and Quantum Information Processing," IEEE International Roadmap for Devices and Systems, 2022. <u>https://irds.ieee.org/editions/2022</u>
- D. S. Holmes, "Superconductor electronic device technology roadmapping within the IRDS," IEEE Electron Devices Society Newsletter, pp. 6–11, Apr. 2022. <u>https://eds.ieee.org/images/files/newsletters/Newsletter_Apr22.pdf</u>

TECHNICAL BRIEFS

SUPERCONDUCTOR ELECTRONIC DEVICE TECHNOLOGY ROADMAPPING WITHIN THE IRDS

D. Scott Holmes IEEE IRDS Cryogenic Electronics and Quantum Information Processing (CEQIP) Chair D.Scott.Holmes@ieee.org

such as higher clock frequencies.

Abstract—For superconductor electronics to meet the needs expected for applications such as quantum computing or large-scale digital computing, significant improvements will be required, especially in circuit density and complexity. Key to improvement are innovations in superconductor devices and logic families. Technology roadmaps are under development to provide goals and timelines.

Index Terms-superconductor elec-

faster data movement, and lower energy per computation. Neuromorphic computing for large-scale artificial intelligence applications needs energy-efficient solutions and might be a natural fit for superconductor circuits that naturally use pulse-based logic. Quantum computing using superconducting circuits requires operation at temperatures around 10 mK where the energy loss in semiconductor control and interface circuits seems prohibitive at full scale. their present forms are unlikely to meet the expected future requirements. New devices, circuits, fabrication processes, and architectures are needed.

A full discussion of the applications, drivers, and technology ecosystem for superconductor electronics is not possible in this short article. For further information, see the latest available IRDS CEQIP report [1]. This article will focus on device developments needed for superconductor electronics.

II. Essentials of Superconductor

