

WORKSHOP – Sustainable Electronics & International Cooperation On Semiconductors

Ferroelectric memories – Enabler for novel computing architectures

Konrad Seidel

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Name

Low power High speed Secure

Low power High speed Secure

NS.

A. Keshavarzi et al., "Ferroelectronics for edge intelligence," IEEE Micro 2020

* * * * * * * * * *

Conventional Memory hierarchy

Combine memory with computing

Ferroelectrics in general

Crystal structure with polar axis contain two stable states

26 Fe bised

No iron involved!

Just similar behavior like Ferromagnetic

Reversible switching between these two states over external E-Field possible

International Cooperation On Semiconductors

1955

1957

First patents on

the FeFET concept

1977

1996

4Mb FRAM by

Samsung

1998

2000

Sony: Fe Memory

in PS2

2001

2005

Fujitsu /

Seiko-Epson

180nm FRAM

1921

1944

Ferroelectricity in

ABO₂ (BaTiO₂)

pervoskite

material

1951

1952

Reported PZT as

FE solid solution

First FRAM

concept

* * * * * * * * *

Dielectric only

→ ferroelectricity requires non-centrosymmetry

WORKSHOP – Sustainable Electronics & International Cooperation On Semiconductors

The material looks nice...

How to build Storage elements out of it?

S FE Memory device concepts

International Cooperation On Semiconductors

1T FEOL FeFET

1T FEOL FeFET

Non-destructive readout

International Cooperation On Semiconductors

 $\stackrel{\textcircled{}_{\scriptstyle \bigcirc}}{\rightarrow}$ Asymmetric MFIS electrodes $\xrightarrow{}$ limited reliability

Alignment with CMOS FEOL device process

1T

1T FEOL FeFET

1T1C FRAM

Non-destructive readout

International Cooperation On Semiconductors

- $\stackrel{\textcircled{}_{\scriptstyle{\circ}}}{\rightarrow}$ Asymmetric MFIS electrodes $\xrightarrow{}$ limited reliability
- Alignment with CMOS FEOL device process

dendritic grains of ~230 nm

1T FEOL FeFET

1T1C FRAM

International Cooperation On Semiconductors

On-destructive readout

Symmetric MFM electrodes
 → good reliability

Standard CMOS FEOL device

FE Memory device concepts

1T1C BEOL FeFET (MFMIS)

- Non-destructive readout
- Symmetric MFM electrodes
 → good reliability
- Standard CMOS FEOL device process

Challenges

- BEOL ferroelectric device integration (thermal budget)
- Understanding and handling of Floating Node
- Scalability

1T1C BEOL FeFET (MFMIS)

D. Lehninger et al., EDL 2022

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Konrad Seidel , Fraunhofer IPMS

D Lohninger of al EDI 2022

Integration in Chip Technologies

International Cooperation

Integration in Chip Technologies

International Cooperation On Semiconductors

Fraunhofer IPMS – Center Nanoelectronic Technologies (CNT)

- Fully industry standard CMOS cleanroom
- ~2700 m² used CR and lab area
- More than 80 tools for 300mm processing and metrology installed
- ISO9001:2015 certification

Fraunhofer IPMS – Center Nanoelectronic Technologies (CNT)

Spintronic

Ferroelectric / RRAM

+ many more tools (electrodes, patterning, cleaning,...)

FRAM FeFET FeMFET

	eSRAM	eDRAM	FG Flash	SONOS	ReRAM	PCM	STT-MRAM	FeRAM	FeFET	FeMFET
Mechanism	Cross-coupled	Charge on capacitor	Charge on FG	Charge in Nitride	Filament formation	Phase change	Spin transfer torque, magnetic	Polarization switching	Polarization switching	Polarization switching
Cell Structure	6T	1T1C	1.5T	2T	1T-1R	1T-1R	1T-1R	1T-1C	1T	1T-1C
Cell Size	120-150 F ²	40 F ²	50 F ²	60 F ²	60 F ²	60 F ²	50 F ²	50 F ²	20-30 F ²	30-40 F ²
MLC	No	No	Yes	Yes	Yes	Yes	No	Potential	Yes	Yes
R _{on} /R _{off} ratio	N/A	N/A	>104	>104	10-100	10-100	<10	N/A	>104	>104
Integration Node	7nm FinFET	22nm FinFET	40nm	28nm HKMG	22nm FinFET	40nm	22nm FinFET	130nm	22nm FDSOI	180nm ¹
Additional Masks	0	5+	13+	5+	3+	3+	3+	2-3	1	2-3
Energy/bit	~1 fJ	~1 pJ	100 pJ	~10 pJ	>10 pJ	100 pJ	>10 pJ	~1 pJ	~1 fJ	~10 fJ
Latency	<1 ns	>10 ns	0.1-1 ms	10-100 ns	>100 ns	>100 ns	>10 ns	>10 ns	~1 ns	10 ns
Endurance	10 ¹⁶	10 ¹⁶	10 ⁴ -10 ⁵	10 ⁴ -10 ⁶	10⁵-10⁷	10⁵-10⁷	10 ⁶ -10 ⁷	>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰
Retention	volatile	Refresh	10 yrs	10 yrs	10 yrs	10 yrs	10 yrs	10 yrs	10 yrs	10 yrs

adopted from A. Keshavarzi et al, IEEE Micro, 2020

FRAM	FeFET	FeMFET

FeRAM	FeFET	FeMFET		
Polarization switching	Polarization switching	Polarization switching		
1T-1C	1T	1T-1C		
50 F ²	20-30 F ²	30-40 F ²		
Potential	Yes	Yes		
N/A	>104	>104		
130nm	22nm FDSOI	180nm ¹		
2-3	1	2-3		
~1 pJ	~1 fJ	~10 fJ		
>10 ns	~1 ns	10 ns		
>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰		
10 yrs	10 yrs	10 yrs		

Write speed test on FeMFET Array

Potential

- **#1** Scalability
- #2 CMOS compatibility
- #3 Low Power
- #4 High Speed

FeRAM	FeFET	FeMFET	
Polarization	Polarization	Polarization	
switching	switching	switching	
1T-1C	1T	1T-1C	
50 F ²	20-30 F ²	30-40 F ²	
Potential	Yes	Yes	
N/A	>104	>104	
130nm	22nm FDSOI	180nm ¹	
2-3	1	2-3	
~1 pJ	~1 fJ	~10 fJ	
>10 ns	~1 ns	10 ns	
>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰	
10 yrs	10 yrs	10 yrs	

K. Seidel et al., VLSI 2022

A. Sunbul, Adv. Eng. Mater., 25: 2201124. https://doi.org/10.1002/adem.202201124

FRAM FeFET FeMFET

FeRAM FeFET FeMFET Polarization Polarization Polarization switching switching switching 1T-1C 1T 1T-1C $50 F^{2}$ 30-40 F² 20-30 F² Potential Yes Yes >10⁴ N/A >10⁴ 180nm¹ 130nm 22nm FDSOI 2-3 2-3 1 ~1 pJ ~1 fJ ~10 fJ >10 ns ~1 ns 10 ns 10^{10} >10¹⁴ 10⁵-10⁹ 10 yrs 10 yrs 10 yrs

Retention on large MFM caps

K. Seidel et al., VLSI 2022

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Konrad Seidel , Fraunhofer IPMS

Potential #1 Scalability #2 CMOS compatibility #3 Low Power #4 High Speed #5 High Endurance (MFM) #6 Low Retention

FRAM FeFET FeMFET

FeRAM	FeFET	FeMFET	
Polarization	Polarization	Polarization	
switching	switching	switching	
1T-1C	1T	1T-1C	
50 F ²	20-30 F ²	30-40 F ²	
Potential	Yes	Yes	
N/A	>104	>104	
130nm	22nm FDSOI	180nm ¹	
2-3	1	2-3	
~1 pJ	~1 fJ	~10 fJ	
>10 ns	~1 ns	10 ns	
>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰	
10 yrs	10 yrs	10 yrs	

Potential

#1 Scalability

- #2 CMOS compatibility
- #3 Low Power
- #4 High Speed
- **#5 High Endurance** (МFM)
- #6 Low Retention
- **#7** Radiation hardened

FRAM FEFET FEMFET

FeRAM	FeFET	FeMFET	
Polarization	Polarization	Polarization	
switching	switching	switching	
1T-1C	1T	1T-1C	
50 F ²	20-30 F ²	30-40 F ²	
Potential	Yes	Yes	
N/A	>104	>104	
130nm	22nm FDSOI	180nm ¹	
2-3	1	2-3	
~1 pJ	~1 fJ	~10 fJ	
>10 ns	~1 ns	10 ns	
>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰	
10 yrs	10 yrs	10 yrs	

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Konrad Seidel , Fraunhofer IPMS

Potential

#1 Scalability

#2 CMOS compatibility

#3 Low Power

#4 High Speed

#5 High Endurance (MFM)

- #6 Low Retention
- #7 Radiation hardened#8 Analog MLC switch

Ideal for analog in Memory computing

FRAM FeFET FeMFET

FeRAM	FeFET	FeMFET	
Polarization switching	Polarization switching	Polarization switching	
1T-1C	1T	1T-1C	
50 F ²	20-30 F ²	30-40 F ²	
Potential	Yes	Yes	
N/A	>104	>104	
130nm	22nm FDSOI	180nm ¹	
2-3	1	2-3	
~1 pJ	~1 fJ	~10 fJ	
>10 ns	~1 ns	10 ns	
>10 ¹⁴	10 ⁵ -10 ⁹	10 ¹⁰	
10 yrs	10 yrs	10 yrs	

WORKSHOP – Sustainable Electronics & International Cooperation On Semiconductors

How to do computing with such memories?

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Name

Conventional architecture

Computing for Artificial Intelligence

International Cooperatio

A. Keshavarzi et al., "Ferroelectronics for edge intelligence," IEEE Micro 2020

Computing Performance

Computation in Memory Performance determined by MAC operations

T. Soliman et al. Ultra Low Power Flexible Precision FeFET based Analog In-memory Computing, IEDM 2020

S. De et al. First Demonstration of Ultra-High Precision 4Kb 28nm HKMG 1FeFET-1T Based Memory Array Macro for Highly Scaled Deep Learning Applications, in prep

Computation in Memory

Segment Concept for high Utilization

T. Soliman et al. Ultra Low Power Flexible Precision FeFET based Analog In-memory Computing, IEDM 2020

International Cooperation

On Semiconductors

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors Konrad Seidel , Fraunhofer IPMS

ADC

Computation in Memory Process Element (PE)

S. De et al. First Demonstration of Ultra-High Precision 4Kb 28nm HKMG 1FeFET-1T Based Memory Array Macro for Highly Scaled Deep Learning Applications, in prep

Y. Qian et al. Acceleration of Quadratic Unconstrained Binary Optimization Problems with FeFET Computing-in-Memory Arrays: Prime Factorization as a Case Study, VLSI 2022

T. Soliman et al. A Ferroelectric FET Based In-memory Architecture for Multi-Precision Neural Networks, SOCC 2021

Computing Performance

Analog Ferroelectric CAM

International Cooperation On Semiconductors

ML-

Ē0

 $\overline{7}$

Fixing one FeFET to HVT state, the 2FeFET CAM becomes an analog CAM, capable of doing a threshold detection.

X. Yin, et al., Deep random forest with ferroelectric analog content addressable memory, Nature Electronics (under review)

I. Chakraborty et.al Appl. Phys. Rev. 7, 021308 (2020);

- Limitations of current computing hardware
- Emerging memories as potential game-changer
- Ferroelectric memories as potential solution
- Practical implementation options

2FeFET cell

Overcoming memory bottleneck bottleneck Combine memory with computing

٥G

So

n+

Volt Speed

~1ns

0.5V

Size

6Т

 \odot

Ferroelectric

Memories

Technology

DRAM - 1T1C

SRAM - 6T

Write

Source: Adopted and updated from: An Chen, Solid State Electronics, 2016

time (ns

ECSEL Joint Undertaking Electronic Components and Systems for European Leadership

Forschungsfabrik Mikroelektronik

Many thanks

- to the entire Team of Fraunhofer IPMS supporting this work
- To our funding & project partners
- To the CNT team at Fraunhofer IPMS for the always high motivation and great scientific work

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

WORKSHOP - Sustainable Electronics & International Cooperation On Semiconductors

www.icos-semiconductors.eu